Line data Source code
1 : //
2 : // Class for handling of ESD track cuts.
3 : //
4 : // The class manages a number of track quality cuts, a
5 : // track-to-vertex cut and a number of kinematic cuts. Two methods
6 : // can be used to figure out if an ESD track survives the cuts:
7 : // AcceptTrack which takes a single AliESDtrack as argument and
8 : // returns kTRUE/kFALSE or GetAcceptedTracks which takes an AliESDEvent
9 : // object and returns an TObjArray (of AliESDtracks) with the tracks
10 : // in the ESD that survived the cuts.
11 : //
12 : //
13 : // TODO:
14 : // - add functionality to save and load cuts
15 : // - add histograms for kinematic cut variables?
16 : // - upper and lower cuts for all (non-boolean) cuts
17 : // - update print method
18 : // - put comments to each variable
19 : //
20 :
21 : #ifndef ALIESDTRACKCUTS_H
22 : #define ALIESDTRACKCUTS_H
23 :
24 : #include <TString.h>
25 :
26 : #include "AliAnalysisCuts.h"
27 :
28 : class AliESDEvent;
29 : class AliESDtrack;
30 : class AliVTrack;
31 : class AliVEvent;
32 : class AliLog;
33 : class TTree;
34 : class TH1;
35 : class TH1F;
36 : class TH2F;
37 : class TF1;
38 : class TCollection;
39 : class TFormula;
40 :
41 : class AliESDtrackCuts : public AliAnalysisCuts
42 : {
43 : public:
44 : enum ITSClusterRequirement { kOff = 0, kNone, kAny, kFirst, kOnlyFirst, kSecond, kOnlySecond, kBoth };
45 : enum Detector { kSPD = 0, kSDD, kSSD };
46 : enum ITSULayers { kITSU012 = 0, kITSU34, kITSU56 };
47 : enum MultEstTrackCuts { kMultEstTrackCutGlobal = 0, kMultEstTrackCutITSSA, kMultEstTrackCutDCAwSPD, kMultEstTrackCutDCAwoSPD, kNMultEstTrackCuts /* this must always be the last */};
48 : enum MultEstTrackType { kTrackletsITSTPC = 0, kTrackletsITSSA, kTracklets };
49 : enum VertexType { kVertexTracks = 0x1, kVertexSPD = 0x2, kVertexTPC = 0x4 };
50 :
51 : AliESDtrackCuts(const Char_t* name = "AliESDtrackCuts", const Char_t* title = "");
52 : virtual ~AliESDtrackCuts();
53 :
54 : virtual Bool_t IsSelected(TObject* obj)
55 628 : {return AcceptTrack((AliESDtrack*)obj);}
56 0 : virtual Bool_t IsSelected(TList* /*list*/) {return kTRUE;}
57 :
58 : Bool_t AcceptTrack(const AliESDtrack* esdTrack);
59 : Bool_t AcceptVTrack(const AliVTrack* vTrack);
60 : TObjArray* GetAcceptedTracks(const AliESDEvent* esd, Bool_t bTPC = kFALSE);
61 : Int_t CountAcceptedTracks(const AliESDEvent* const esd);
62 :
63 : static Int_t GetReferenceMultiplicity(const AliESDEvent* esd, Bool_t tpcOnly);
64 : static Int_t GetReferenceMultiplicity(const AliESDEvent* esd, MultEstTrackType trackType = kTrackletsITSTPC, Float_t etaRange = 0.5, Float_t etaCent=0.);
65 : static AliESDtrackCuts* GetMultEstTrackCuts(MultEstTrackCuts cut);
66 :
67 : static AliESDtrack* GetTPCOnlyTrack(const AliESDEvent* esd, Int_t iTrack);
68 : static AliESDtrack* GetTPCOnlyTrackFromVEvent(const AliVEvent* vEvent, Int_t iTrack);
69 :
70 : // Standard cut definitions
71 : static AliESDtrackCuts* GetStandardTPCOnlyTrackCuts();
72 : static AliESDtrackCuts* GetStandardITSTPCTrackCuts2009(Bool_t selPrimaries=kTRUE);
73 : static AliESDtrackCuts* GetStandardITSTPCTrackCuts2010(Bool_t selPrimaries=kTRUE, Int_t clusterCut=0);
74 : static AliESDtrackCuts* GetStandardITSTPCTrackCuts2011(Bool_t selPrimaries=kTRUE, Int_t clusterCut=1);
75 : static AliESDtrackCuts* GetStandardITSTPCTrackCuts2015PbPb(Bool_t selPrimaries=kTRUE, Int_t clusterCut=1, Bool_t cutAcceptanceEdges = kTRUE, Bool_t removeDistortedRegions = kFALSE);
76 : static AliESDtrackCuts* GetStandardITSSATrackCuts2009(Bool_t selPrimaries=kTRUE, Bool_t useForPid=kTRUE);
77 : static AliESDtrackCuts* GetStandardITSSATrackCuts2010(Bool_t selPrimaries=kTRUE, Bool_t useForPid=kTRUE);
78 : static AliESDtrackCuts* GetStandardITSSATrackCutsPbPb2010(Bool_t selPrimaries=kTRUE, Bool_t useForPid=kTRUE);
79 : static AliESDtrackCuts* GetStandardITSPureSATrackCuts2009(Bool_t selPrimaries=kTRUE, Bool_t useForPid=kTRUE);
80 : static AliESDtrackCuts* GetStandardITSPureSATrackCuts2010(Bool_t selPrimaries=kTRUE, Bool_t useForPid=kTRUE);
81 : // Standard cuts for daughter tracks
82 : static AliESDtrackCuts* GetStandardV0DaughterCuts();
83 :
84 : // static function to determine if the track crosses a distorted region in the TPC
85 : static Bool_t IsTrackInDistortedTpcRegion(const AliESDtrack * esdTrack);
86 :
87 : virtual Long64_t Merge(TCollection* list);
88 : virtual void Copy(TObject &c) const;
89 : AliESDtrackCuts(const AliESDtrackCuts& pd); // Copy Constructor
90 : AliESDtrackCuts &operator=(const AliESDtrackCuts &c);
91 :
92 : //######################################################
93 : // track quality cut setters
94 60 : void SetMinNClustersTPC(Int_t min=-1) {fCutMinNClusterTPC=min;}
95 : void SetMinNClustersTPCPtDep(TFormula *f1=0x0, Float_t ptmax=0.);
96 44 : void SetMinNClustersITS(Int_t min=-1) {fCutMinNClusterITS=min;}
97 44 : void SetMinNCrossedRowsTPC(Float_t min=-1) { fCutMinNCrossedRowsTPC=min;}
98 44 : void SetMinRatioCrossedRowsOverFindableClustersTPC(Float_t min = -1) { fCutMinRatioCrossedRowsOverFindableClustersTPC=min;}
99 0 : void SetMinLengthActiveVolumeTPC(Float_t min = 120., Float_t width=2) {fCutMinLengthActiveVolumeTPC=min; fDeadZoneWidth=width;}
100 : void SetCutGeoNcrNcl(Float_t deadZoneWidth=2,Float_t cutGeoNcrNclLength=130, Float_t cutGeoNcrNclGeom1Pt=1.5, Float_t cutGeoNcrNclFractionNcr=0.9, Float_t cutGeoNcrNclFractionNcl=0.70);
101 0 : void SetCutOutDistortedRegionsTPC(Bool_t cutOutDistortedRegionTPC = kTRUE) {fCutOutDistortedRegionTPC=cutOutDistortedRegionTPC;}
102 :
103 140 : void SetClusterRequirementITS(Detector det, ITSClusterRequirement req = kOff) { fCutClusterRequirementITS[det] = req; }
104 0 : void SetClusterRequirementITS(ITSULayers det, ITSClusterRequirement req = kOff) { fCutClusterRequirementITS[det] = req; }
105 60 : void SetMaxChi2PerClusterTPC(Float_t max=1e10) {fCutMaxChi2PerClusterTPC=max;}
106 44 : void SetMaxChi2PerClusterITS(Float_t max=1e10) {fCutMaxChi2PerClusterITS=max;}
107 44 : void SetMaxChi2TPCConstrainedGlobal(Float_t max=1e10) {fCutMaxChi2TPCConstrainedVsGlobal = max; }
108 44 : void SetMaxChi2TPCConstrainedGlobalVertexType(Int_t vertexType = kVertexTracks | kVertexSPD) { fCutMaxChi2TPCConstrainedVsGlobalVertexType = vertexType; }
109 44 : void SetMaxNOfMissingITSPoints(Int_t max=6) {fCutMaxMissingITSPoints=max;}
110 26 : void SetRequireTPCRefit(Bool_t b=kFALSE) {fCutRequireTPCRefit=b;}
111 22 : void SetRequireTPCStandAlone(Bool_t b=kFALSE) {fCutRequireTPCStandAlone=b;}
112 26 : void SetRequireITSRefit(Bool_t b=kFALSE) {fCutRequireITSRefit=b;}
113 22 : void SetRequireITSPid(Bool_t b=kFALSE) {fCutRequireITSPid=b;}
114 24 : void SetRequireITSStandAlone(Bool_t b=kFALSE) {fCutRequireITSStandAlone = b;}
115 22 : void SetRequireITSPureStandAlone(Bool_t b=kFALSE){fCutRequireITSpureSA = b;}
116 :
117 :
118 30 : void SetAcceptKinkDaughters(Bool_t b=kTRUE) {fCutAcceptKinkDaughters=b;}
119 22 : void SetAcceptSharedTPCClusters(Bool_t b=kTRUE){fCutAcceptSharedTPCClusters=b;}
120 44 : void SetMaxFractionSharedTPCClusters(Float_t max=1e10) {fCutMaxFractionSharedTPCClusters=max;}
121 : void SetMaxCovDiagonalElements(Float_t c1=1e10, Float_t c2=1e10, Float_t c3=1e10, Float_t c4=1e10, Float_t c5=1e10)
122 48 : {fCutMaxC11=c1; fCutMaxC22=c2; fCutMaxC33=c3; fCutMaxC44=c4; fCutMaxC55=c5;}
123 44 : void SetMaxRel1PtUncertainty(Float_t max=1e10) {fCutMaxRel1PtUncertainty=max;}
124 :
125 :
126 : // track to vertex cut setters
127 44 : void SetMaxNsigmaToVertex(Float_t sigma=1e10) {fCutNsigmaToVertex = sigma; SetRequireSigmaToVertex(kTRUE);}
128 24 : void SetRequireSigmaToVertex(Bool_t b=kTRUE) {fCutSigmaToVertexRequired = b;}
129 56 : void SetMaxDCAToVertexXY(Float_t dist=1e10) {fCutMaxDCAToVertexXY = dist;}
130 64 : void SetMaxDCAToVertexZ(Float_t dist=1e10) {fCutMaxDCAToVertexZ = dist;}
131 44 : void SetMinDCAToVertexXY(Float_t dist=0.) {fCutMinDCAToVertexXY = dist;}
132 44 : void SetMinDCAToVertexZ(Float_t dist=0.) {fCutMinDCAToVertexZ = dist;}
133 : void SetMaxDCAToVertexXYPtDep(const char *dist="");
134 : void SetMaxDCAToVertexZPtDep(const char *dist="");
135 : void SetMinDCAToVertexXYPtDep(const char *dist="");
136 : void SetMinDCAToVertexZPtDep(const char *dist="");
137 28 : void SetDCAToVertex2D(Bool_t b=kFALSE) {fCutDCAToVertex2D = b;}
138 :
139 :
140 : // getters
141 0 : Int_t GetMinNClusterTPC() const { return fCutMinNClusterTPC;}
142 0 : Float_t GetMinNCrossedRowsTPC() const { return fCutMinNCrossedRowsTPC;}
143 0 : Float_t GetMinRatioCrossedRowsOverFindableClustersTPC() const { return fCutMinRatioCrossedRowsOverFindableClustersTPC;}
144 0 : Float_t GetMinLengthActiveVolumeTPC() const { return fCutMinLengthActiveVolumeTPC;}
145 0 : Int_t GetMinNClustersITS() const { return fCutMinNClusterITS;}
146 0 : TFormula *GetMinNClustersTPCPtDep() const { return f1CutMinNClustersTPCPtDep;}
147 0 : ITSClusterRequirement GetClusterRequirementITS(Detector det) const { return fCutClusterRequirementITS[det]; }
148 0 : ITSClusterRequirement GetClusterRequirementITS(ITSULayers det) const { return fCutClusterRequirementITS[det]; }
149 0 : Float_t GetMaxChi2PerClusterTPC() const { return fCutMaxChi2PerClusterTPC;}
150 0 : Float_t GetMaxChi2PerClusterITS() const { return fCutMaxChi2PerClusterITS;}
151 0 : Float_t GetMaxChi2TPCConstrainedGlobal() const { return fCutMaxChi2TPCConstrainedVsGlobal; }
152 0 : Int_t GetMaxChi2TPCConstrainedGlobalVertexType() const { return fCutMaxChi2TPCConstrainedVsGlobalVertexType; }
153 0 : Int_t GetMaxNOfMissingITSPoints() const { return fCutMaxMissingITSPoints;}
154 0 : Bool_t GetRequireTPCRefit() const { return fCutRequireTPCRefit;}
155 0 : Bool_t GetRequireTPCStandAlone() const { return fCutRequireTPCStandAlone;}
156 0 : Bool_t GetRequireITSRefit() const { return fCutRequireITSRefit;}
157 0 : Bool_t GetRequireITSStandAlone() const { return fCutRequireITSStandAlone; }
158 0 : Bool_t GetAcceptKinkDaughters() const { return fCutAcceptKinkDaughters;}
159 0 : Bool_t GetAcceptSharedTPCClusters() const {return fCutAcceptSharedTPCClusters;}
160 0 : Float_t GetMaxFractionSharedTPCClusters() const {return fCutMaxFractionSharedTPCClusters;}
161 : void GetMaxCovDiagonalElements(Float_t& c1, Float_t& c2, Float_t& c3, Float_t& c4, Float_t& c5) const
162 0 : {c1 = fCutMaxC11; c2 = fCutMaxC22; c3 = fCutMaxC33; c4 = fCutMaxC44; c5 = fCutMaxC55;}
163 0 : Float_t GetMaxRel1PtUncertainty() const { return fCutMaxRel1PtUncertainty;}
164 0 : Float_t GetMaxNsigmaToVertex() const { return fCutNsigmaToVertex;}
165 0 : Float_t GetMaxDCAToVertexXY() const { return fCutMaxDCAToVertexXY;}
166 0 : Float_t GetMaxDCAToVertexZ() const { return fCutMaxDCAToVertexZ;}
167 0 : Float_t GetMinDCAToVertexXY() const { return fCutMinDCAToVertexXY;}
168 0 : Float_t GetMinDCAToVertexZ() const { return fCutMinDCAToVertexZ;}
169 0 : const char* GetMaxDCAToVertexXYPtDep() const { return fCutMaxDCAToVertexXYPtDep;}
170 0 : const char* GetMaxDCAToVertexZPtDep() const { return fCutMaxDCAToVertexZPtDep;}
171 0 : const char* GetMinDCAToVertexXYPtDep() const { return fCutMinDCAToVertexXYPtDep;}
172 0 : const char* GetMinDCAToVertexZPtDep() const { return fCutMinDCAToVertexZPtDep;}
173 0 : Bool_t GetDCAToVertex2D() const { return fCutDCAToVertex2D;}
174 0 : Bool_t GetRequireSigmaToVertex( ) const { return fCutSigmaToVertexRequired;}
175 :
176 0 : void GetPRange(Float_t& r1, Float_t& r2) const {r1=fPMin; r2=fPMax;}
177 0 : void GetPtRange(Float_t& r1, Float_t& r2) const {r1=fPtMin; r2=fPtMax;}
178 0 : void GetPxRange(Float_t& r1, Float_t& r2) const {r1=fPxMin; r2=fPxMax;}
179 0 : void GetPyRange(Float_t& r1, Float_t& r2) const {r1=fPyMin; r2=fPyMax;}
180 0 : void GetPzRange(Float_t& r1, Float_t& r2) const {r1=fPzMin; r2=fPzMax;}
181 0 : void GetEtaRange(Float_t& r1, Float_t& r2) const {r1=fEtaMin; r2=fEtaMax;}
182 0 : void GetRapRange(Float_t& r1, Float_t& r2) const {r1=fRapMin; r2=fRapMax;}
183 :
184 : // track kinmatic cut setters
185 44 : void SetPRange(Float_t r1=0, Float_t r2=1e10) {fPMin=r1; fPMax=r2;}
186 48 : void SetPtRange(Float_t r1=0, Float_t r2=1e10) {fPtMin=r1; fPtMax=r2;}
187 44 : void SetPxRange(Float_t r1=-1e10, Float_t r2=1e10) {fPxMin=r1; fPxMax=r2;}
188 44 : void SetPyRange(Float_t r1=-1e10, Float_t r2=1e10) {fPyMin=r1; fPyMax=r2;}
189 44 : void SetPzRange(Float_t r1=-1e10, Float_t r2=1e10) {fPzMin=r1; fPzMax=r2;}
190 196 : void SetEtaRange(Float_t r1=-1e10, Float_t r2=1e10) {fEtaMin=r1; fEtaMax=r2;}
191 44 : void SetRapRange(Float_t r1=-1e10, Float_t r2=1e10) {fRapMin=r1; fRapMax=r2;}
192 :
193 : //######################################################
194 22 : void SetHistogramsOn(Bool_t b=kFALSE) {fHistogramsOn = b;}
195 : void DefineHistograms(Int_t color=1);
196 : virtual Bool_t LoadHistograms(const Char_t* dir = 0);
197 : void SaveHistograms(const Char_t* dir = 0);
198 : void DrawHistograms();
199 :
200 : static Float_t GetSigmaToVertex(const AliESDtrack* const esdTrack);
201 : static Float_t GetSigmaToVertexVTrack(const AliVTrack* const vTrack);
202 :
203 : static void EnableNeededBranches(TTree* tree);
204 :
205 : // void SaveQualityCuts(Char_t* file)
206 : // void LoadQualityCuts(Char_t* file)
207 :
208 0 : TH1F* GetDZNormalized(Int_t i) const { return fhDZNormalized[i]; }
209 0 : TH1F* GetNClustersTPC(Int_t i) const { return fhNClustersTPC[i]; }
210 0 : TH1F* GetPtHist(Int_t i) const { return fhPt[i]; }
211 :
212 : // TOF cuts
213 0 : void SetFlagCutTOFdistance(Bool_t flagTOFcut) { fFlagCutTOFdistance = flagTOFcut;}
214 0 : Bool_t GetFlagCutTOFdistance() const { return fFlagCutTOFdistance;}
215 0 : void SetCutTOFdistance(Float_t cut) { fCutTOFdistance = cut;}
216 0 : Float_t GetCutTOFdistance() const { return fCutTOFdistance;}
217 0 : void SetRequireTOFout(Bool_t b = kFALSE) {fCutRequireTOFout = b;}
218 : void SetRequireStandardTOFmatchCuts();
219 :
220 : protected:
221 : void Init(); // sets everything to 0
222 : Bool_t CheckITSClusterRequirement(ITSClusterRequirement req, Bool_t clusterL1, Bool_t clusterL2);
223 : Bool_t CheckPtDepDCA(TString dist,Bool_t print=kFALSE) const;
224 : void SetPtDepDCACuts(Double_t pt);
225 :
226 : enum { kNCuts = 45 };
227 :
228 : //######################################################
229 : // esd track quality cuts
230 : static const Char_t* fgkCutNames[kNCuts]; //! names of cuts (for internal use)
231 : static AliESDtrackCuts* fgMultEstTrackCuts[kNMultEstTrackCuts]; //! track cuts used for the multiplicity estimate
232 :
233 : Int_t fCutMinNClusterTPC; // min number of tpc clusters
234 : Int_t fCutMinNClusterITS; // min number of its clusters
235 : Float_t fCutMinNCrossedRowsTPC; // min number of tpc crossed rows
236 : Float_t fCutMinRatioCrossedRowsOverFindableClustersTPC; // min ratio crossed rows / findable clusters
237 : TFormula *f1CutMinNClustersTPCPtDep; // pt dependent tpc clusters cut
238 : Float_t fCutMaxPtDepNClustersTPC; // maximum pt for pt dependend TPC cluster cut. For pt=>ptmax NClusterMin = f1CutMinNClustersTPCPtDep->Eval(fCutMaxPtDepNClustersTPC).
239 : Float_t fCutMinLengthActiveVolumeTPC; // mininum length (in cm) over which the track is sampled in the active volume of the TPC (outside boundaries)
240 : Float_t fDeadZoneWidth; // width of the TPC dead zone (missing pads + PRF +ExB)
241 : // TPC geometrical cut combined with cut on crossed rows and number of clusters
242 : Float_t fCutGeoNcrNclLength; // cut on the geometical length condition Ngeom(cm)>cutGeoNcrNclLength default=130
243 : Float_t fCutGeoNcrNclGeom1Pt; // 1/pt dependence slope cutGeoNcrNclLength:=fCutGeoNcrNclLength-abs(1/pt)^fCutGeoNcrNclGeom1Pt
244 : Float_t fCutGeoNcrNclFractionNcr; // relative fraction cut Ncr condition Ncr>cutGeoNcrNclFractionNcr*fCutGeoNcrNclLength
245 : Float_t fCutGeoNcrNclFractionNcl; // ralative fraction cut Ncr condition Ncl>cutGeoNcrNclFractionNcl
246 : // TPC distorted regions
247 : Bool_t fCutOutDistortedRegionTPC; // flag if distorted regions in the TPC should be cut out
248 :
249 :
250 : ITSClusterRequirement fCutClusterRequirementITS[3]; // detailed ITS cluster requirements for (SPD, SDD, SSD)
251 :
252 : Float_t fCutMaxChi2PerClusterTPC; // max tpc fit chi2 per tpc cluster
253 : Float_t fCutMaxChi2PerClusterITS; // max its fit chi2 per its cluster
254 : Float_t fCutMaxChi2TPCConstrainedVsGlobal; // max chi2 TPC track constrained with vtx vs. global track
255 : Int_t fCutMaxChi2TPCConstrainedVsGlobalVertexType; // vertex type for max chi2 TPC track constrained with vtx vs. global track (can be configured to accept several vertex types)
256 : Int_t fCutMaxMissingITSPoints; // max n. of missing ITS points
257 :
258 : Float_t fCutMaxC11; // max cov. matrix diag. elements (res. y^2)
259 : Float_t fCutMaxC22; // max cov. matrix diag. elements (res. z^2)
260 : Float_t fCutMaxC33; // max cov. matrix diag. elements (res. sin(phi)^2)
261 : Float_t fCutMaxC44; // max cov. matrix diag. elements (res. tan(theta_dip)^2)
262 : Float_t fCutMaxC55; // max cov. matrix diag. elements (res. 1/pt^2)
263 :
264 : Float_t fCutMaxRel1PtUncertainty; // max relative uncertainty of 1/pt
265 :
266 : Bool_t fCutAcceptKinkDaughters; // accepting kink daughters?
267 : Bool_t fCutAcceptSharedTPCClusters;// accepting shared clusters in TPC?
268 : Float_t fCutMaxFractionSharedTPCClusters; //Maximum fraction of shared clusters in TPC
269 : Bool_t fCutRequireTPCRefit; // require TPC refit
270 : Bool_t fCutRequireTPCStandAlone; // require TPC standalone tracks
271 : Bool_t fCutRequireITSRefit; // require ITS refit
272 : Bool_t fCutRequireITSPid; // require ITS pid
273 : Bool_t fCutRequireITSStandAlone; // require ITS standalone tracks (remove pure SA)
274 : Bool_t fCutRequireITSpureSA; // require ITS pure standalone tracks (found using all ITS clusters)
275 :
276 :
277 : // track to vertex cut
278 : Float_t fCutNsigmaToVertex; // max number of estimated sigma from track-to-vertex
279 : Bool_t fCutSigmaToVertexRequired; // cut track if sigma from track-to-vertex could not be calculated
280 : Float_t fCutMaxDCAToVertexXY; // track-to-vertex cut in max absolute distance in xy-plane
281 : Float_t fCutMaxDCAToVertexZ; // track-to-vertex cut in max absolute distance in z-plane
282 : Float_t fCutMinDCAToVertexXY; // track-to-vertex cut on min absolute distance in xy-plane
283 : Float_t fCutMinDCAToVertexZ; // track-to-vertex cut on min absolute distance in z-plane
284 : //
285 : TString fCutMaxDCAToVertexXYPtDep; // pt-dep track-to-vertex cut in max absolute distance in xy-plane
286 : TString fCutMaxDCAToVertexZPtDep; // pt-dep track-to-vertex cut in max absolute distance in z-plane
287 : TString fCutMinDCAToVertexXYPtDep; // pt-dep track-to-vertex cut on min absolute distance in xy-plane
288 : TString fCutMinDCAToVertexZPtDep; // pt-dep track-to-vertex cut on min absolute distance in z-plane
289 :
290 : // only internal use, set via strings above
291 : TFormula *f1CutMaxDCAToVertexXYPtDep; // pt-dep track-to-vertex cut in max absolute distance in xy-plane
292 : TFormula *f1CutMaxDCAToVertexZPtDep; // pt-dep track-to-vertex cut in max absolute distance in z-plane
293 : TFormula *f1CutMinDCAToVertexXYPtDep; // pt-dep track-to-vertex cut on min absolute distance in xy-plane
294 : TFormula *f1CutMinDCAToVertexZPtDep; // pt-dep track-to-vertex cut on min absolute distance in z-plane
295 :
296 : Bool_t fCutDCAToVertex2D; // if true a 2D DCA cut is made. Tracks are accepted if sqrt((DCAXY / fCutMaxDCAToVertexXY)^2 + (DCAZ / fCutMaxDCAToVertexZ)^2) < 1 AND sqrt((DCAXY / fCutMinDCAToVertexXY)^2 + (DCAZ / fCutMinDCAToVertexZ)^2) > 1
297 :
298 : // esd kinematics cuts
299 : Float_t fPMin, fPMax; // definition of the range of the P
300 : Float_t fPtMin, fPtMax; // definition of the range of the Pt
301 : Float_t fPxMin, fPxMax; // definition of the range of the Px
302 : Float_t fPyMin, fPyMax; // definition of the range of the Py
303 : Float_t fPzMin, fPzMax; // definition of the range of the Pz
304 : Float_t fEtaMin, fEtaMax; // definition of the range of the eta
305 : Float_t fRapMin, fRapMax; // definition of the range of the y
306 :
307 : Bool_t fCutRequireTOFout; // require TOF out
308 : Bool_t fFlagCutTOFdistance; // cut on TOFdistance? --> yes by default!
309 : Float_t fCutTOFdistance; // value of the cut on TOFdistance
310 : static Char_t fgBeamTypeFlag; // -1 --> no check done on the beam type yet
311 : // 0 --> beam type != "A-A"
312 : // 1 --> beam type == "A-A"
313 :
314 : //######################################################
315 : // diagnostics histograms
316 : Bool_t fHistogramsOn; // histograms on/off
317 :
318 : TH1F* fhNClustersITS[2]; //->
319 : TH1F* fhNClustersTPC[2]; //->
320 : TH1F* fhNSharedClustersTPC[2]; //->
321 : TH1F* fhNCrossedRowsTPC[2]; //->
322 : TH1F* fhRatioCrossedRowsOverFindableClustersTPC[2]; // ->
323 :
324 : TH1F* fhChi2PerClusterITS[2]; //->
325 : TH1F* fhChi2PerClusterTPC[2]; //->
326 : TH1F* fhChi2TPCConstrainedVsGlobal[2]; //->
327 : TH1F* fhNClustersForITSPID[2]; //-> number of points in SDD+SSD (ITS PID selection)
328 : TH1F* fhNMissingITSPoints[2]; //-> number of missing ITS points
329 :
330 : TH1F* fhC11[2]; //->
331 : TH1F* fhC22[2]; //->
332 : TH1F* fhC33[2]; //->
333 : TH1F* fhC44[2]; //->
334 : TH1F* fhC55[2]; //->
335 :
336 : TH1F* fhRel1PtUncertainty[2]; //-> rel. uncertainty of 1/pt
337 :
338 : TH1F* fhDXY[2]; //->
339 : TH1F* fhDZ[2]; //->
340 : TH1F* fhDXYDZ[2]; //-> absolute distance sqrt(dxy**2 + dz**2) to vertex; if 2D cut is set, normalized to given values
341 : TH2F* fhDXYvsDZ[2]; //->
342 :
343 : TH1F* fhDXYNormalized[2]; //->
344 : TH1F* fhDZNormalized[2]; //->
345 : TH2F* fhDXYvsDZNormalized[2]; //->
346 : TH1F* fhNSigmaToVertex[2]; //->
347 :
348 : TH1F* fhPt[2]; //-> pt of esd tracks
349 : TH1F* fhEta[2]; //-> eta of esd tracks
350 :
351 : TF1* ffDTheoretical; //-> theoretical distance to vertex normalized (2d gauss)
352 :
353 : TH1F* fhCutStatistics; //-> statistics of what cuts the tracks did not survive
354 : TH2F* fhCutCorrelation; //-> 2d statistics plot
355 :
356 : TH2F* fhTOFdistance[2]; //-> TOF signal distance dx vs dz
357 :
358 218 : ClassDef(AliESDtrackCuts, 23)
359 : };
360 :
361 :
362 : #endif
|