Line data Source code
1 : #ifndef AliHMPIDParam_h
2 : #define AliHMPIDParam_h
3 : /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 : * See cxx source for full Copyright notice */
5 :
6 : /* $Id$ */
7 :
8 : #include "stdio.h"
9 : #include <TMath.h>
10 : #include <TNamed.h> //base class
11 : #include <TGeoManager.h> //Instance()
12 : #include <TGeoMatrix.h> //Instance()
13 : #include <TVector3.h> //Lors2Mars() Mars2Lors()
14 :
15 : // Class providing all the needed parametrised information
16 : // to construct the geometry, to define segmentation and to provide response model
17 : // In future will also provide all the staff needed for alignment and calibration
18 :
19 : class AliHMPIDParam :public TNamed
20 : {
21 : public:
22 : //ctor&dtor
23 0 : virtual ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}}
24 :
25 : void Print(Option_t *opt="") const; //print current parametrization
26 :
27 : static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton
28 : static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ...
29 : //geo info
30 : enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5}; //Segmenation
31 : enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x
32 : enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y
33 : //The electronics takes the 32bit int as: first 9 bits for the pedestal and the second 9 bits for threshold - values below should be within range
34 : enum EPedestalData{kPadMeanZeroCharge=400,kPadSigmaZeroCharge=20,kPadMeanMasked=401,kPadSigmaMasked=20}; //One can go up to 5 sigma cut, overflow is protected in AliHMPIDCalib
35 :
36 :
37 0 : static Float_t r2d ( ) {return 57.2957795; }
38 2173114 : static Float_t SizePadX ( ) {return fgCellX; } //pad size x, [cm]
39 2173306 : static Float_t SizePadY ( ) {return fgCellY; } //pad size y, [cm]
40 :
41 0 : static Float_t SizePcX ( ) {return fgPcX; } // PC size x
42 40 : static Float_t SizePcY ( ) {return fgPcY; } // PC size y
43 440 : static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc]; } // PC limits
44 440 : static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc]; } // PC limits
45 440 : static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc]; } // PC limits
46 440 : static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc]; } // PC limits
47 1293602 : static Int_t Nsig ( ) {return fgNSigmas; } //Getter n. sigmas for noise
48 1764 : static Float_t SizeAllX ( ) {return fgAllX; } //all PCs size x, [cm]
49 1764 : static Float_t SizeAllY ( ) {return fgAllY; } //all PCs size y, [cm]
50 :
51 1086326 : static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm]
52 1086528 : static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm]
53 :
54 0 : Float_t ChPhiMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Phi()*r2d();} //PhiMin (degree) of the camber ch
55 0 : Float_t ChThMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Theta()*r2d();} //ThMin (degree) of the camber ch
56 0 : Float_t ChPhiMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Phi()*r2d();} //PhiMax (degree) of the camber ch
57 0 : Float_t ChThMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Theta()*r2d();} //ThMax (degree) of the camber ch
58 :
59 : inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py)
60 :
61 13494 : static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad
62 112 : static Int_t DDL2C (Int_t ddl ) {return ddl/2; } //ddl -> chamber
63 10232 : static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber
64 2236570 : static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc
65 1132564 : static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X
66 1132462 : static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y
67 :
68 1293602 : static Bool_t IsOverTh (Float_t q ) {return q >= fgThreshold; } //is digit over threshold?
69 :
70 1758 : Bool_t GetInstType ( )const{return fgInstanceType; } //return if the instance is from geom or ideal
71 :
72 : inline static Bool_t IsInDead(Float_t x,Float_t y ); //is the point in dead area?
73 : inline static Bool_t IsDeadPad(Int_t padx,Int_t pady,Int_t ch); //is a dead pad?
74 :
75 : inline void SetChStatus(Int_t ch,Bool_t status=kTRUE);
76 : inline void SetSectStatus(Int_t ch,Int_t sect,Bool_t status);
77 : inline void SetPcStatus(Int_t ch,Int_t pc,Bool_t status);
78 : inline void PrintChStatus(Int_t ch);
79 : inline void SetGeomAccept();
80 :
81 : inline static Int_t InHVSector( Float_t y ); //find HV sector
82 128 : static Int_t Radiator( Float_t y ) {if (InHVSector(y)<0) return -1; return InHVSector(y)/2;}
83 32 : static Double_t HinRad(Float_t y) {if (Radiator(y)<0) return -1;return y-Radiator(y)*fgkMinPcY[Radiator(y)];} // height in the radiator to estimate temperature from gradient
84 39020 : static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x<fgkMaxPcX[kMaxPc]+d&&y<fgkMaxPcY[kMaxPc]+d; } //is point inside chamber boundaries?
85 :
86 : //For optical properties
87 0 : static Double_t EPhotMin() {return 5.5;} //
88 0 : static Double_t EPhotMax() {return 8.5;} //Photon energy range,[eV]
89 182 : static Double_t NIdxRad(Double_t eV,Double_t temp) {return TMath::Sqrt(1+0.554*(1239.84/eV)*(1239.84/eV)/((1239.84/eV)*(1239.84/eV)-5769))-0.0005*(temp-20);}
90 0 : static Double_t NIdxWin(Double_t eV) {return TMath::Sqrt(1+46.411/(10.666*10.666-eV*eV)+228.71/(18.125*18.125-eV*eV));}
91 0 : static Double_t NMgF2Idx(Double_t eV) {return 1.7744 - 2.866e-3*(1239.842609/eV) + 5.5564e-6*(1239.842609/eV)*(1239.842609/eV);} // MgF2 idx of trasparency system
92 0 : static Double_t NIdxGap(Double_t eV) {return 1+0.12489e-6/(2.62e-4 - eV*eV/1239.84/1239.84);}
93 0 : static Double_t LAbsRad(Double_t eV) {return (eV<7.8)*(GausPar(eV,3.20491e16,-0.00917890,0.742402)+GausPar(eV,3035.37,4.81171,0.626309))+(eV>=7.8)*0.0001;}
94 0 : static Double_t LAbsWin(Double_t eV) {return (eV<8.2)*(818.8638-301.0436*eV+36.89642*eV*eV-1.507555*eV*eV*eV)+(eV>=8.2)*0.0001;}//fit from DiMauro data 28.10.03
95 0 : static Double_t LAbsGap(Double_t eV) {return (eV<7.75)*6512.399+(eV>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*eV-8.011441e-3*eV*eV+3.392126e-4*eV*eV*eV);}
96 0 : static Double_t QEffCSI(Double_t eV) {return (eV>6.07267)*0.344811*(1-exp(-1.29730*(eV-6.07267)));}//fit from DiMauro data 28.10.03
97 0 : static Double_t GausPar(Double_t x,Double_t a1,Double_t a2,Double_t a3) {return a1*TMath::Exp(-0.5*((x-a2)/a3)*((x-a2)/a3));}
98 : inline static Double_t FindTemp(Double_t tLow,Double_t tUp,Double_t y); //find the temperature of the C6F14 in a given point with coord. y (in x is uniform)
99 :
100 :
101 16 : Double_t GetEPhotMean ()const {return fPhotEMean;}
102 97608 : Double_t GetRefIdx ()const {return fRefIdx;} //running refractive index
103 :
104 166 : Double_t MeanIdxRad ()const {return NIdxRad(fPhotEMean,fTemp);}
105 0 : Double_t MeanIdxWin ()const {return NIdxWin(fPhotEMean);}
106 : //
107 1024 : Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual
108 304 : Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge
109 16 : Float_t MultCut ()const {return 30;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure
110 :
111 34342 : Double_t RadThick ()const {return 1.5;} //<--TEMPORAR--> to be removed in future. Radiator thickness
112 59388 : Double_t WinThick ()const {return 0.5;} //<--TEMPORAR--> to be removed in future. Window thickness
113 53300 : Double_t GapThick ()const {return 8.0;} //<--TEMPORAR--> to be removed in future. Proximity gap thickness
114 29336 : Double_t WinIdx ()const {return 1.5787;} //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2)
115 14954 : Double_t GapIdx ()const {return 1.0005;} //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4)
116 :
117 : static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid
118 : static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event
119 : static void IdealPosition(Int_t iCh,TGeoHMatrix *m); //ideal position of given chamber
120 : //trasformation methodes
121 9035 : void Lors2Mars (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;} Double_t l[3]={x-fX,y-fY,z}; fM[c]->LocalToMaster(l,m); }
122 30 : TVector3 Lors2Mars (Int_t c,Float_t x,Float_t y, Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m); }//MRS->LRS
123 2644 : void Mars2Lors (Int_t c,Double_t *m,Float_t &x ,Float_t &y )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS
124 1024 : void Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l);
125 512 : Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]);
126 512 : th=TMath::ATan(pt/l[2]);
127 512 : ph=TMath::ATan2(l[1],l[0]);}
128 0 : void Lors2MarsVec(Int_t c,Double_t *m,Double_t *l )const{fM[c]->LocalToMasterVect(m,l); }//LRS->MRS
129 0 : TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm
130 3584 : void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm
131 3584 : void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane
132 :
133 0 : void SetTemp (Double_t temp ) {fTemp = temp;} //set actual temperature of the C6F14
134 0 : void SetEPhotMean (Double_t ePhotMean ) {fPhotEMean = ePhotMean;} //set mean photon energy
135 :
136 104 : void SetRefIdx (Double_t refRadIdx ) {fRefIdx = refRadIdx;} //set running refractive index
137 :
138 0 : void SetNSigmas (Int_t sigmas ) {fgNSigmas = sigmas;} //set sigma cut
139 1293602 : void SetThreshold (Int_t thres ) {fgThreshold = thres;} //set sigma cut
140 0 : void SetInstanceType(Bool_t inst ) {fgInstanceType = inst;} //kTRUE if from geomatry kFALSE if from ideal geometry
141 : //For PID
142 : Double_t SigLoc (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation
143 : Double_t SigGeom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin
144 : Double_t SigCrom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy
145 : Double_t Sigma2 (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh );//photon candidate sigma^2
146 :
147 : static Double_t SigmaCorrFact(Int_t iPart, Double_t occupancy );//correction factor for theoretical resolution
148 :
149 : //Mathieson Getters
150 :
151 2167352 : static Double_t PitchAnodeCathode() {return fgkD;}
152 1105400 : static Double_t SqrtK3x() {return fgkSqrtK3x;}
153 1083676 : static Double_t K2x () {return fgkK2x;}
154 21724 : static Double_t K1x () {return fgkK1x;}
155 530976 : static Double_t K4x () {return fgkK4x;}
156 1105400 : static Double_t SqrtK3y() {return fgkSqrtK3y;}
157 1083676 : static Double_t K2y () {return fgkK2y;}
158 21724 : static Double_t K1y () {return fgkK1y;}
159 530976 : static Double_t K4y () {return fgkK4y;}
160 : //
161 : enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber
162 : enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11}; //flags for Reconstruction
163 :
164 : protected:
165 : static /*const*/ Float_t fgkMinPcX[6]; //limits PC
166 : static /*const*/ Float_t fgkMinPcY[6]; //limits PC
167 : static /*const*/ Float_t fgkMaxPcX[6]; //limits PC
168 : static /*const*/ Float_t fgkMaxPcY[6];
169 :
170 : static Bool_t fgMapPad[160][144][7]; //map of pads to evaluate if they are active or dead (160,144) pads for 7 chambers
171 :
172 : // Mathieson constants
173 : // For HMPID --> x direction means parallel to the wires: K3 = 0.66 (NIM A270 (1988) 602-603) fig.1
174 : // For HMPID --> y direction means perpendicular to the wires: K3 = 0.90 (NIM A270 (1988) 602-603) fig.2
175 : //
176 :
177 : static const Double_t fgkD; // ANODE-CATHODE distance 0.445/2
178 :
179 : static const Double_t fgkSqrtK3x,fgkK2x,fgkK1x,fgkK4x;
180 : static const Double_t fgkSqrtK3y,fgkK2y,fgkK1y,fgkK4y;
181 : //
182 :
183 : static Int_t fgNSigmas; //sigma Cut
184 : static Int_t fgThreshold; //sigma Cut
185 : static Bool_t fgInstanceType; //kTRUE if from geomatry kFALSE if from ideal geometry
186 :
187 : static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; //definition of HMPID geometric parameters
188 : AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton
189 :
190 : static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton
191 :
192 : TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations
193 : Float_t fX; //x shift of LORS with respect to rotated MARS
194 : Float_t fY; //y shift of LORS with respect to rotated MARS
195 : Double_t fRefIdx; //running refractive index of C6F14
196 : Double_t fPhotEMean; //mean energy of photon
197 : Double_t fTemp; //actual temparature of C6F14
198 : private:
199 : AliHMPIDParam(const AliHMPIDParam& r); //dummy copy constructor
200 : AliHMPIDParam &operator=(const AliHMPIDParam& r); //dummy assignment operator
201 :
202 22 : ClassDef(AliHMPIDParam,1) //HMPID main parameters class
203 : };
204 :
205 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
206 : AliHMPIDParam* AliHMPIDParam::Instance()
207 : {
208 : // Return pointer to the AliHMPIDParam singleton.
209 : // Arguments: none
210 : // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry
211 1300002 : if(!fgInstance) new AliHMPIDParam(kFALSE); //default setting for reconstruction, if no geometry.root -> AliFatal
212 649851 : return fgInstance;
213 0 : }//Instance()
214 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
215 : AliHMPIDParam* AliHMPIDParam::InstanceNoGeo()
216 : {
217 : // Return pointer to the AliHMPIDParam singleton without the geometry.root.
218 : // Arguments: none
219 : // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry
220 528 : if(!fgInstance) new AliHMPIDParam(kTRUE); //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters
221 264 : return fgInstance;
222 0 : }//Instance()
223 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
224 : Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y)
225 : {
226 : // Check is the current point is outside of sensitive area or in dead zones
227 : // Arguments: x,y -position
228 : // Returns: 1 if not in sensitive zone
229 55888 : for(Int_t iPc=0;iPc<6;iPc++)
230 75788 : if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc
231 :
232 145 : return kTRUE;
233 5585 : }
234 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
235 : Bool_t AliHMPIDParam::IsDeadPad(Int_t padx,Int_t pady,Int_t ch)
236 : {
237 : // Check is the current pad is active or not
238 : // Arguments: padx,pady pad integer coord
239 : // Returns: kTRUE if dead, kFALSE if active
240 :
241 0 : if(fgMapPad[padx-1][pady-1][ch]) return kFALSE; //current pad active
242 :
243 0 : return kTRUE;
244 0 : }
245 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
246 : void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
247 : {
248 : // Check the pad of given position
249 : // Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
250 : // Returns: none
251 2232 : pc=px=py=-1;
252 3204 : if (x>fgkMinPcX[0] && x<fgkMaxPcX[0]) {pc=0; px=Int_t( x / SizePadX());}//PC 0 or 2 or 4
253 432 : else if(x>fgkMinPcX[1] && x<fgkMaxPcX[1]) {pc=1; px=Int_t((x-fgkMinPcX[1]) / SizePadX());}//PC 1 or 3 or 5
254 : else return;
255 2335 : if (y>fgkMinPcY[0] && y<fgkMaxPcY[0]) { py=Int_t( y / SizePadY());}//PC 0 or 1
256 2525 : else if(y>fgkMinPcY[2] && y<fgkMaxPcY[2]) {pc+=2;py=Int_t((y-fgkMinPcY[2]) / SizePadY());}//PC 2 or 3
257 1472 : else if(y>fgkMinPcY[4] && y<fgkMaxPcY[4]) {pc+=4;py=Int_t((y-fgkMinPcY[4]) / SizePadY());}//PC 4 or 5
258 : else return;
259 1116 : }
260 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
261 : Int_t AliHMPIDParam::InHVSector(Float_t y)
262 : {
263 : //Calculate the HV sector corresponding to the cluster position
264 : //Arguments: y
265 : //Returns the HV sector in the single module
266 :
267 : Int_t hvsec = -1;
268 670 : Int_t pc,px,py;
269 335 : Lors2Pad(1.,y,pc,px,py);
270 340 : if(py==-1) return hvsec;
271 :
272 330 : hvsec = (py+(pc/2)*(kMaxPy+1))/((kMaxPy+1)/2);
273 :
274 330 : return hvsec;
275 335 : }
276 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
277 : Double_t AliHMPIDParam::FindTemp(Double_t tLow,Double_t tHigh,Double_t y)
278 : {
279 : // Model for gradient in temperature
280 16 : Double_t yRad = HinRad(y); //height in a given radiator
281 8 : if(tHigh<tLow) tHigh = tLow; //if Tout < Tin consider just Tin as reference...
282 8 : if(yRad<0 ) yRad = 0; //protection against fake y values
283 12 : if(yRad>SizePcY()) yRad = SizePcY(); //protection against fake y values
284 :
285 8 : Double_t gradT = (tHigh-tLow)/SizePcY(); // linear gradient
286 8 : return gradT*yRad+tLow;
287 : }
288 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
289 : void AliHMPIDParam::SetChStatus(Int_t ch,Bool_t status)
290 : {
291 : //Set a chamber on or off depending on the status
292 : //Arguments: ch=chamber,status=kTRUE = active, kFALSE=off
293 : //Returns: none
294 0 : for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
295 0 : for(Int_t pady=0;pady<kMaxPcy+1;pady++) {
296 0 : fgMapPad[padx][pady][ch] = status;
297 : }
298 : }
299 0 : }
300 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
301 : void AliHMPIDParam::SetSectStatus(Int_t ch,Int_t sect,Bool_t status)
302 : {
303 : //Set a given sector sect for a chamber ch on or off depending on the status
304 : //Sector=0,5 (6 sectors)
305 : //Arguments: ch=chamber,sect=sector,status: kTRUE = active, kFALSE=off
306 : //Returns: none
307 :
308 : Int_t npadsect = (kMaxPcy+1)/6;
309 0 : Int_t padSectMin = npadsect*sect;
310 0 : Int_t padSectMax = padSectMin+npadsect;
311 :
312 0 : for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
313 0 : for(Int_t pady=padSectMin;pady<padSectMax;pady++) {
314 0 : fgMapPad[padx][pady][ch] = status;
315 : }
316 : }
317 0 : }
318 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
319 : void AliHMPIDParam::SetPcStatus(Int_t ch,Int_t pc,Bool_t status)
320 : {
321 : //Set a given PC pc for a chamber ch on or off depending on the status
322 : //Arguments: ch=chamber,pc=PC,status: kTRUE = active, kFALSE=off
323 : //Returns: none
324 :
325 0 : Int_t deltaX = pc%2;
326 0 : Int_t deltaY = pc/2;
327 0 : Int_t padPcXMin = deltaX*kPadPcX;
328 0 : Int_t padPcXMax = padPcXMin+kPadPcX;
329 0 : Int_t padPcYMin = deltaY*kPadPcY;
330 0 : Int_t padPcYMax = padPcYMin+kPadPcY;
331 :
332 0 : for(Int_t padx=padPcXMin;padx<padPcXMax;padx++) {
333 0 : for(Int_t pady=padPcYMin;pady<padPcYMax;pady++) {
334 0 : fgMapPad[padx][pady][ch] = status;
335 : }
336 : }
337 0 : }
338 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
339 : void AliHMPIDParam::PrintChStatus(Int_t ch)
340 : {
341 : //Print the map status of a chamber on or off depending on the status
342 : //Arguments: ch=chamber
343 : //Returns: none
344 0 : Printf(" ");
345 0 : Printf(" --------- C H A M B E R %d ---------------",ch);
346 0 : for(Int_t pady=kMaxPcy;pady>=0;pady--) {
347 0 : for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
348 0 : if(padx==80) printf(" ");
349 0 : printf("%d",fgMapPad[padx][pady][ch]);
350 : }
351 0 : printf(" %d \n",pady+1);
352 0 : if(pady%48==0) printf("\n");
353 : }
354 0 : printf("\n");
355 0 : }
356 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
357 : void AliHMPIDParam::SetGeomAccept()
358 : {
359 : //Set the real acceptance of the modules, due to ineficciency or hardware problems (up tp 1/6/2010)
360 : //Arguments: none
361 : //Returns: none
362 0 : SetSectStatus(0,3,kFALSE);
363 0 : SetSectStatus(4,0,kFALSE);
364 0 : SetSectStatus(5,1,kFALSE);
365 0 : SetSectStatus(6,2,kFALSE);
366 0 : SetSectStatus(6,3,kFALSE);
367 0 : }
368 : #endif
|