Line data Source code
1 : // **************************************************************************
2 : // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 : // * *
4 : // * Author: The ALICE Off-line Project. *
5 : // * Contributors are mentioned in the code where appropriate. *
6 : // * *
7 : // * Permission to use, copy, modify and distribute this software and its *
8 : // * documentation strictly for non-commercial purposes is hereby granted *
9 : // * without fee, provided that the above copyright notice appears in all *
10 : // * copies and that both the copyright notice and this permission notice *
11 : // * appear in the supporting documentation. The authors make no claims *
12 : // * about the suitability of this software for any purpose. It is *
13 : // * provided "as is" without express or implied warranty. *
14 : // **************************************************************************
15 :
16 :
17 : #include "AliHMPIDv1.h" //class header
18 : #include "AliHMPIDParam.h" //StepManager()
19 : #include "AliHMPIDHit.h" //Hits2SDigs(),StepManager()
20 : #include "AliHMPIDDigit.h" //Digits2Raw(), Raw2SDigits()
21 : #include "AliHMPIDRawStream.h" //Digits2Raw(), Raw2SDigits()
22 : #include "AliRawReader.h" //Raw2SDigits()
23 : #include <TVirtualMC.h> //StepManager() for TVirtualMC::GetMC()
24 : #include <TPDGCode.h> //StepHistory()
25 : #include <AliStack.h> //StepManager(),Hits2SDigits()
26 : #include <AliLoader.h> //Hits2SDigits()
27 : #include <AliRunLoader.h> //Hits2SDigits()
28 : #include <AliMC.h> //StepManager()
29 : #include <AliRun.h> //CreateMaterials()
30 : #include <AliMagF.h> //CreateMaterials()
31 : //#include <TGeoManager.h> //CreateGeometry()
32 : #include <AliCDBEntry.h> //CreateMaterials()
33 : #include <AliCDBManager.h> //CreateMaterials()
34 : #include <TF1.h> //DefineOpticalProperties()
35 : #include <TF2.h> //DefineOpticalProperties()
36 : #include <TGeoGlobalMagField.h>
37 : #include <TLorentzVector.h> //IsLostByFresnel()
38 : #include <TTree.h>
39 :
40 12 : ClassImp(AliHMPIDv1)
41 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
42 : void AliHMPIDv1::AddAlignableVolumes()const
43 : {
44 : // Associates the symbolic volume name with the corresponding volume path. Interface method from AliModule invoked from AliMC
45 : // Arguments: none
46 : // Returns: none
47 0 : for(Int_t i=AliHMPIDParam::kMinCh;i<=AliHMPIDParam::kMaxCh;i++)
48 0 : gGeoManager->SetAlignableEntry(Form("/HMPID/Chamber%i",i),Form("ALIC_1/HMPID_%i",i));
49 0 : }
50 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51 : void AliHMPIDv1::CreateMaterials()
52 : {
53 : // Definition of available HMPID materials
54 : // Arguments: none
55 : // Returns: none
56 0 : AliDebug(1,"Start v1 HMPID.");
57 :
58 : //data from PDG booklet 2002 density [gr/cm^3] rad len [cm] abs len [cm]
59 0 : Float_t aAir[4]={12,14,16,36} , zAir[4]={6,7,8,18} , wAir[4]={0.000124,0.755267,0.231781,0.012827} , dAir=0.00120479; Int_t nAir=4;//mixture 0.9999999
60 0 : Float_t aC6F14[2]={ 12.01 , 18.99} , zC6F14[2]={ 6 , 9} , wC6F14[2]={6 , 14} , dC6F14=1.68 ; Int_t nC6F14=-2;
61 0 : Float_t aSiO2[2]={ 28.09 , 15.99} , zSiO2[2]={14 , 8} , wSiO2[2]={1 , 2} , dSiO2=2.64 ; Int_t nSiO2=-2;
62 0 : Float_t aCH4[2]={ 12.01 , 1.01} , zCH4[2]={ 6 , 1} , wCH4[2]={1 , 4} , dCH4=7.17e-4 ; Int_t nCH4=-2;
63 0 : Float_t aCsI[2]={132.90 ,126.90} , zCsI[2]={55 ,53} , wCsI[2]={1 , 1} , dCsI=0.1 ; Int_t nCsI=-2;
64 0 : Float_t aRoha= 12.01 , zRoha= 6 , dRoha= 0.10 , radRoha= 18.80 , absRoha= 86.3/dRoha; //special material- quazi carbon
65 0 : Float_t aCu= 63.55 , zCu= 29 , dCu= 8.96 , radCu= 1.43 , absCu= 134.9/dCu ;
66 0 : Float_t aW=183.84 , zW= 74 , dW= 19.30 , radW= 0.35 , absW= 185.0/dW ;
67 0 : Float_t aAl= 26.98 , zAl= 13 , dAl= 2.70 , radAl= 8.90 , absAl= 106.4/dAl ;
68 :
69 : Int_t matId=0; //tmp material id number
70 : Int_t unsens = 0, sens=1; //sensitive or unsensitive medium
71 0 : Int_t itgfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); //type of field intergration 0 no field -1 user in guswim 1 Runge Kutta 2 helix 3 const field along z
72 0 : Float_t maxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); //max field value
73 : Float_t tmaxfd = -10.0; //max deflection angle due to magnetic field in one step
74 : Float_t deemax = - 0.2; //max fractional energy loss in one step
75 : Float_t stemax = - 0.1; //mas step allowed [cm]
76 : Float_t epsil = 0.001; //abs tracking precision [cm]
77 : Float_t stmin = - 0.001; //min step size [cm] in continius process transport, negative value: choose it automatically
78 0 : AliMixture(++matId,"Air" ,aAir ,zAir ,dAir ,nAir ,wAir ); AliMedium(kAir ,"Air" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
79 0 : AliMixture(++matId,"C6F14",aC6F14,zC6F14,dC6F14,nC6F14,wC6F14); AliMedium(kC6F14,"C6F14",matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
80 0 : AliMixture(++matId,"SiO2" ,aSiO2 ,zSiO2 ,dSiO2 ,nSiO2 ,wSiO2 ); AliMedium(kSiO2 ,"SiO2" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
81 0 : AliMixture(++matId,"CH4" ,aCH4 ,zCH4 ,dCH4 ,nCH4 ,wCH4 ); AliMedium(kCH4 ,"CH4" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
82 0 : AliMixture(++matId,"CsI" ,aCsI ,zCsI ,dCsI ,nCsI ,wCsI ); AliMedium(kCsI ,"CsI" ,matId, sens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);//sensitive
83 :
84 0 : AliMaterial(++matId,"Roha",aRoha,zRoha,dRoha,radRoha,absRoha); AliMedium(kRoha,"Roha", matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
85 0 : AliMaterial(++matId,"Cu" ,aCu ,zCu ,dCu ,radCu ,absCu ); AliMedium(kCu ,"Cu" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
86 0 : AliMaterial(++matId,"W" ,aW ,zW ,dW ,radW ,absW ); AliMedium(kW ,"W" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
87 0 : AliMaterial(++matId,"Al" ,aAl ,zAl ,dAl ,radAl ,absAl ); AliMedium(kAl ,"Al" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
88 :
89 : // DefineOpticalProperties(); // NOT TO BE CALLED BY USER CODE !!!
90 0 : }//void AliHMPID::CreateMaterials()
91 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
92 : void AliHMPIDv1::CreateGeometry()
93 : {
94 : //Creates detailed geometry simulation (currently GEANT volumes tree)
95 0 : AliDebug(1,"Start main.");
96 0 : if(!TVirtualMC::GetMC()->IsRootGeometrySupported()) return;
97 :
98 : Double_t cm=1,mm=0.1*cm,mkm=0.001*mm,dx,dy,dz;//default is cm
99 :
100 0 : TGeoVolume *pRich=gGeoManager->MakeBox("HMPID",gGeoManager->GetMedium("HMPID_CH4"),dx=(6*mm+1681*mm+6*mm)/2, //main HMPID volume
101 0 : dy=(6*mm+1466*mm+6*mm)/2,
102 0 : dz=(80*mm+40*mm)*2/2); //x,y taken from 2033P1 z from p84 TDR
103 0 : for(Int_t iCh=AliHMPIDParam::kMinCh;iCh<=AliHMPIDParam::kMaxCh;iCh++){//place 7 chambers
104 0 : TGeoHMatrix *pMatrix=new TGeoHMatrix;
105 0 : AliHMPIDParam::IdealPosition(iCh,pMatrix);
106 0 : gGeoManager->GetVolume("ALIC")->AddNode(pRich,iCh,pMatrix);
107 : }
108 :
109 0 : Float_t par[3];
110 0 : Int_t matrixIdReturn=0; //matrix id returned by AliMatrix
111 : //Pad Panel frame 6 sectors
112 0 : par[0]=648*mm/2;par[1]= 411*mm/2;par[2]=40 *mm/2;TVirtualMC::GetMC()->Gsvolu("Rppf" ,"BOX ",(*fIdtmed)[kAl] ,par,3);//PPF 2001P2 inner size of the slab by 1mm more
113 0 : par[0]=181*mm/2;par[1]=89.25*mm/2;par[2]=38.3*mm/2;TVirtualMC::GetMC()->Gsvolu("RppfLarge","BOX ",(*fIdtmed)[kAir] ,par,3);//large whole
114 0 : par[0]=114*mm/2;par[1]=89.25*mm/2;par[2]=38.3*mm/2;TVirtualMC::GetMC()->Gsvolu("RppfSmall","BOX ",(*fIdtmed)[kAir] ,par,3);//small whole
115 0 : par[0]=644*mm/2;par[1]= 407*mm/2;par[2]= 1.7*mm/2;TVirtualMC::GetMC()->Gsvolu("Rpc" ,"BOX ",(*fIdtmed)[kCsI] ,par,3);//by 0.2 mm more then actual size (PCB 2006P1)
116 :
117 0 : TVirtualMC::GetMC()->Gspos("Rppf",0,"HMPID", -335*mm, -433*mm, 8*cm+20*mm, 0,"ONLY");//F1 2040P1 z p.84 TDR
118 0 : TVirtualMC::GetMC()->Gspos("Rppf",1,"HMPID", +335*mm, -433*mm, 8*cm+20*mm, 0,"ONLY");
119 0 : TVirtualMC::GetMC()->Gspos("Rppf",2,"HMPID", -335*mm, 0*mm, 8*cm+20*mm, 0,"ONLY");
120 0 : TVirtualMC::GetMC()->Gspos("Rppf",3,"HMPID", +335*mm, 0*mm, 8*cm+20*mm, 0,"ONLY");
121 0 : TVirtualMC::GetMC()->Gspos("Rppf",4,"HMPID", -335*mm, +433*mm, 8*cm+20*mm, 0,"ONLY");
122 0 : TVirtualMC::GetMC()->Gspos("Rppf",5,"HMPID", +335*mm, +433*mm, 8*cm+20*mm, 0,"ONLY");
123 0 : TVirtualMC::GetMC()->Gspos("Rpc" ,1,"Rppf", 0*mm, 0*mm, -19.15*mm, 0,"ONLY");//PPF 2001P2
124 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",1,"Rppf", -224.5*mm, -151.875*mm, 0.85*mm, 0,"ONLY");
125 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",2,"Rppf", -224.5*mm, - 50.625*mm, 0.85*mm, 0,"ONLY");
126 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",3,"Rppf", -224.5*mm, + 50.625*mm, 0.85*mm, 0,"ONLY");
127 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",4,"Rppf", -224.5*mm, +151.875*mm, 0.85*mm, 0,"ONLY");
128 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",1,"Rppf", - 65.0*mm, -151.875*mm, 0.85*mm, 0,"ONLY");
129 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",2,"Rppf", - 65.0*mm, - 50.625*mm, 0.85*mm, 0,"ONLY");
130 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",3,"Rppf", - 65.0*mm, + 50.625*mm, 0.85*mm, 0,"ONLY");
131 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",4,"Rppf", - 65.0*mm, +151.875*mm, 0.85*mm, 0,"ONLY");
132 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",5,"Rppf", + 65.0*mm, -151.875*mm, 0.85*mm, 0,"ONLY");
133 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",6,"Rppf", + 65.0*mm, - 50.625*mm, 0.85*mm, 0,"ONLY");
134 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",7,"Rppf", + 65.0*mm, + 50.625*mm, 0.85*mm, 0,"ONLY");
135 0 : TVirtualMC::GetMC()->Gspos("RppfSmall",8,"Rppf", + 65.0*mm, +151.875*mm, 0.85*mm, 0,"ONLY");
136 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",5,"Rppf", +224.5*mm, -151.875*mm, 0.85*mm, 0,"ONLY");
137 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",6,"Rppf", +224.5*mm, - 50.625*mm, 0.85*mm, 0,"ONLY");
138 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",7,"Rppf", +224.5*mm, + 50.625*mm, 0.85*mm, 0,"ONLY");
139 0 : TVirtualMC::GetMC()->Gspos("RppfLarge",8,"Rppf", +224.5*mm, +151.875*mm, 0.85*mm, 0,"ONLY");
140 : //Gap - anod wires 6 copies to HMPID
141 0 : par[0]=648*mm/2;par[1]= 411*mm/2 ;par[2]=4.45*mm/2;TVirtualMC::GetMC()->Gsvolu("Rgap","BOX ",(*fIdtmed)[kCH4] ,par,3);//xy as PPF 2001P2 z WP 2099P1
142 0 : par[0]= 0*mm ;par[1]= 20*mkm/2 ;par[2]= 648*mm/2;TVirtualMC::GetMC()->Gsvolu("Rano","TUBE",(*fIdtmed)[kW] ,par,3);//WP 2099P1 z = gap x PPF 2001P2
143 0 : AliMatrix(matrixIdReturn,180,0, 90,90, 90,0); //wires along x
144 :
145 0 : TVirtualMC::GetMC()->Gspos("Rgap",0,"HMPID", -335*mm, -433*mm,8*cm-2.225*mm, 0,"ONLY"); //F1 2040P1 z WP 2099P1
146 0 : TVirtualMC::GetMC()->Gspos("Rgap",1,"HMPID", +335*mm, -433*mm,8*cm-2.225*mm, 0,"ONLY");
147 0 : TVirtualMC::GetMC()->Gspos("Rgap",2,"HMPID", -335*mm, 0*mm,8*cm-2.225*mm, 0,"ONLY");
148 0 : TVirtualMC::GetMC()->Gspos("Rgap",3,"HMPID", +335*mm, 0*mm,8*cm-2.225*mm, 0,"ONLY");
149 0 : TVirtualMC::GetMC()->Gspos("Rgap",4,"HMPID", -335*mm, +433*mm,8*cm-2.225*mm, 0,"ONLY");
150 0 : TVirtualMC::GetMC()->Gspos("Rgap",5,"HMPID", +335*mm, +433*mm,8*cm-2.225*mm, 0,"ONLY");
151 0 : for(int i=1;i<=96;i++)
152 0 : TVirtualMC::GetMC()->Gspos("Rano",i,"Rgap", 0*mm, -411/2*mm+i*4*mm, 0.185*mm, matrixIdReturn,"ONLY"); //WP 2099P1
153 : //Defines radiators geometry
154 0 : par[0]=1330*mm/2 ;par[1]= 413*mm/2 ;par[2]= 24*mm/2; TVirtualMC::GetMC()->Gsvolu("Rrad" ,"BOX ",(*fIdtmed)[kC6F14] ,par,3); // Rad 2011P1
155 0 : par[0]=1330*mm/2 ;par[1]= 413*mm/2 ;par[2]= 4*mm/2; TVirtualMC::GetMC()->Gsvolu("RradFront" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //front
156 0 : par[0]=1330*mm/2 ;par[1]= 413*mm/2 ;par[2]= 5*mm/2; TVirtualMC::GetMC()->Gsvolu("RradWin" ,"BOX ",(*fIdtmed)[kSiO2] ,par,3); //window
157 0 : par[0]=1330*mm/2 ;par[1]= 5*mm/2 ;par[2]= 15*mm/2; TVirtualMC::GetMC()->Gsvolu("RradLong" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //long side
158 0 : par[0]= 10*mm/2 ;par[1]= 403*mm/2 ;par[2]= 15*mm/2; TVirtualMC::GetMC()->Gsvolu("RradShort" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //short side
159 0 : par[0]= 0 ;par[1]= 10*mm/2 ;par[2]= 15*mm/2; TVirtualMC::GetMC()->Gsvolu("RradSpacer","TUBE",(*fIdtmed)[kSiO2] ,par,3); //spacer
160 :
161 0 : TVirtualMC::GetMC()->Gspos("Rrad",1,"HMPID", 0*mm,-434*mm, -12*mm, 0,"ONLY"); //3 radiators to HMPID
162 0 : TVirtualMC::GetMC()->Gspos("Rrad",2,"HMPID", 0*mm, 0*mm, -12*mm, 0,"ONLY");
163 0 : TVirtualMC::GetMC()->Gspos("Rrad",3,"HMPID", 0*mm,+434*mm, -12*mm, 0,"ONLY");
164 0 : TVirtualMC::GetMC()->Gspos("RradFront",1,"Rrad", 0*mm, 0*mm, -10.0*mm, 0,"ONLY"); //front cover
165 0 : TVirtualMC::GetMC()->Gspos("RradWin" ,1,"Rrad", 0*mm, 0*mm, 9.5*mm, 0,"ONLY"); //quartz window (back cover)
166 0 : TVirtualMC::GetMC()->Gspos("RradLong" ,1,"Rrad", 0*mm,-204*mm, -0.5*mm, 0,"ONLY"); //long side
167 0 : TVirtualMC::GetMC()->Gspos("RradLong" ,2,"Rrad", 0*mm,+204*mm, -0.5*mm, 0,"ONLY"); //long side
168 0 : TVirtualMC::GetMC()->Gspos("RradShort",1,"Rrad",-660*mm, 0*mm, -0.5*mm, 0,"ONLY"); //short side
169 0 : TVirtualMC::GetMC()->Gspos("RradShort",2,"Rrad",+660*mm, 0*mm, -0.5*mm, 0,"ONLY"); //short side
170 0 : for(int i=0;i<3;i++)
171 0 : for(int j=0;j<10;j++)
172 0 : TVirtualMC::GetMC()->Gspos("RradSpacer",10*i+j,"Rrad",-1330*mm/2+116*mm+j*122*mm,(i-1)*105*mm,-0.5*mm,0,"ONLY");//spacers
173 : //Defines SandBox geometry
174 0 : par[0]=1419*mm/2 ;par[1]=1378*mm/2;par[2]=50.5*mm/2; TVirtualMC::GetMC()->Gsvolu("Rsb" ,"BOX ",(*fIdtmed)[kAir] ,par,3); //2072P1
175 0 : par[0]=1419*mm/2 ;par[1]=1378*mm/2;par[2]= 0.5*mm/2; TVirtualMC::GetMC()->Gsvolu("RsbCover","BOX ",(*fIdtmed)[kAl] ,par,3); //cover
176 0 : par[0]=1359*mm/2 ;par[1]=1318*mm/2;par[2]=49.5*mm/2; TVirtualMC::GetMC()->Gsvolu("RsbComb" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //honeycomb structure
177 :
178 0 : TVirtualMC::GetMC()->Gspos("Rsb",1,"HMPID", 0*mm, 0*mm, -73.75*mm, 0,"ONLY"); //p.84 TDR sandbox to rich
179 0 : TVirtualMC::GetMC()->Gspos("RsbComb" ,1,"Rsb", 0*mm, 0*mm, 0*mm, 0,"ONLY"); //2072P1 honeycomv to sandbox
180 0 : TVirtualMC::GetMC()->Gspos("RsbCover",1,"Rsb", 0*mm, 0*mm, +25*mm, 0,"ONLY"); //cover to sandbox
181 0 : TVirtualMC::GetMC()->Gspos("RsbCover",2,"Rsb", 0*mm, 0*mm, -25*mm, 0,"ONLY"); //cover to sandbox
182 0 : AliDebug(1,"Stop v1. HMPID option");
183 0 : }//CreateGeometry()
184 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
185 : void AliHMPIDv1::Init()
186 : {
187 : // This methode defines ID for sensitive volumes, i.e. such geometry volumes for which there are if(TVirtualMC::GetMC()->CurrentVolID()==XXX) statements in StepManager()
188 : // Arguments: none
189 : // Returns: none
190 0 : AliDebug(1,"Start v1 HMPID.");
191 0 : fIdRad = TVirtualMC::GetMC()->VolId("Rrad");
192 0 : fIdWin = TVirtualMC::GetMC()->VolId("RradWin");
193 0 : fIdPc = TVirtualMC::GetMC()->VolId("Rpc");
194 0 : fIdAmpGap = TVirtualMC::GetMC()->VolId("Rgap");
195 0 : fIdProxGap = TVirtualMC::GetMC()->VolId("Rgap");
196 :
197 0 : AliDebug(1,"Stop v1 HMPID.");
198 0 : }
199 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
200 : void AliHMPIDv1::DefineOpticalProperties()
201 : {
202 : // Optical properties definition.
203 : const Int_t kNbins=30; //number of photon energy points
204 : Float_t emin=5.5,emax=8.5; //Photon energy range,[eV]
205 0 : Float_t aEckov [kNbins];
206 0 : Double_t dEckov [kNbins];
207 0 : Float_t aAbsRad[kNbins], aAbsWin[kNbins], aAbsGap[kNbins], aAbsMet[kNbins];
208 0 : Float_t aIdxRad[kNbins], aIdxWin[kNbins], aIdxGap[kNbins], aIdxMet[kNbins], aIdxPc[kNbins];
209 0 : Float_t aQeAll [kNbins], aQePc [kNbins];
210 0 : Double_t dReflMet[kNbins], dQePc[kNbins];
211 :
212 0 : TF2 *pRaIF=new TF2("HidxRad","sqrt(1+0.554*(1239.84/x)^2/((1239.84/x)^2-5769)-0.0005*(y-20))" ,emin,emax,0,50); //DiMauro mail temp 0-50 degrees C
213 0 : TF1 *pWiIF=new TF1("HidxWin","sqrt(1+46.411/(10.666*10.666-x*x)+228.71/(18.125*18.125-x*x))" ,emin,emax); //SiO2 idx TDR p.35
214 0 : TF1 *pGaIF=new TF1("HidxGap","1+0.12489e-6/(2.62e-4 - x*x/1239.84/1239.84)" ,emin,emax); //?????? from where
215 :
216 0 : TF1 *pRaAF=new TF1("HabsRad","(x<7.8)*(gaus+gaus(3))+(x>=7.8)*0.0001" ,emin,emax); //fit from DiMauro data 28.10.03
217 0 : pRaAF->SetParameters(3.20491e16,-0.00917890,0.742402,3035.37,4.81171,0.626309);
218 0 : TF1 *pWiAF=new TF1("HabsWin","(x<8.2)*(818.8638-301.0436*x+36.89642*x*x-1.507555*x*x*x)+(x>=8.2)*0.0001" ,emin,emax); //fit from DiMauro data 28.10.03
219 0 : TF1 *pGaAF=new TF1("HabsGap","(x<7.75)*6512.399+(x>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*x-8.011441e-3*x*x+3.392126e-4*x*x*x)",emin,emax); //????? from where
220 :
221 0 : TF1 *pQeF =new TF1("Hqe" ,"0+(x>6.07267)*0.344811*(1-exp(-1.29730*(x-6.07267)))" ,emin,emax); //fit from DiMauro data 28.10.03
222 :
223 0 : for(Int_t i=0;i<kNbins;i++){
224 0 : Float_t eV=emin+0.1*i; //Ckov energy in eV
225 0 : aEckov [i] =1e-9*eV; //Ckov energy in GeV
226 0 : dEckov [i] = aEckov[i];
227 0 : aAbsRad[i]=pRaAF->Eval(eV); aIdxRad[i]=1.292;//pRaIF->Eval(eV,20); //Simulation for 20 degress C
228 0 : aAbsWin[i]=pWiAF->Eval(eV); aIdxWin[i]=1.5787;//pWiIF->Eval(eV);
229 0 : aAbsGap[i]=pGaAF->Eval(eV); aIdxGap[i]=1.0005;//pGaIF->Eval(eV);
230 0 : aQeAll[i] =1; //QE for all other materials except for PC must be 1.
231 0 : aAbsMet[i] =0.0001; aIdxMet[i]=0; //metal ref idx must be 0 in order to reflect photon
232 0 : aIdxPc [i]=1; aQePc [i]=pQeF->Eval(eV); //PC ref idx must be 1 in order to apply photon to QE conversion
233 0 : dQePc [i]=pQeF->Eval(eV);
234 0 : dReflMet[i] = 0.; // no reflection on the surface of the pc (?)
235 : }
236 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kC6F14] , kNbins, aEckov, aAbsRad , aQeAll , aIdxRad );
237 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kSiO2] , kNbins, aEckov, aAbsWin , aQeAll , aIdxWin );
238 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kCH4] , kNbins, aEckov, aAbsGap , aQeAll , aIdxGap );
239 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kCu] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet );
240 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kW] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet ); //n=0 means reflect photons
241 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kCsI] , kNbins, aEckov, aAbsMet , aQePc , aIdxPc ); //n=1 means convert photons
242 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kAl] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet );
243 :
244 : // Define a skin surface for the photocatode to enable 'detection' in G4
245 0 : TVirtualMC::GetMC()->DefineOpSurface("surfPc", kGlisur /*kUnified*/,kDielectric_metal,kPolished, 0.);
246 0 : TVirtualMC::GetMC()->SetMaterialProperty("surfPc", "EFFICIENCY", kNbins, dEckov, dQePc);
247 0 : TVirtualMC::GetMC()->SetMaterialProperty("surfPc", "REFLECTIVITY", kNbins, dEckov, dReflMet);
248 0 : TVirtualMC::GetMC()->SetSkinSurface("skinPc", "Rpc", "surfPc");
249 :
250 0 : delete pRaAF;delete pWiAF;delete pGaAF; delete pRaIF; delete pWiIF; delete pGaIF; delete pQeF;
251 0 : }
252 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
253 : Bool_t AliHMPIDv1::IsLostByFresnel()
254 : {
255 : // Calculate probability for the photon to be lost by Fresnel reflection.
256 0 : TLorentzVector p4;
257 0 : Double_t mom[3],localMom[3];
258 0 : TVirtualMC::GetMC()->TrackMomentum(p4); mom[0]=p4(1); mom[1]=p4(2); mom[2]=p4(3);
259 0 : localMom[0]=0; localMom[1]=0; localMom[2]=0;
260 0 : TVirtualMC::GetMC()->Gmtod(mom,localMom,2);
261 0 : Double_t localTc = localMom[0]*localMom[0]+localMom[2]*localMom[2];
262 0 : Double_t localTheta = TMath::ATan2(TMath::Sqrt(localTc),localMom[1]);
263 0 : Double_t cotheta = TMath::Abs(TMath::Cos(localTheta));
264 0 : if(TVirtualMC::GetMC()->GetRandom()->Rndm() < Fresnel(p4.E()*1e9,cotheta,1)){
265 0 : AliDebug(1,"Photon lost");
266 0 : return kTRUE;
267 : }else
268 0 : return kFALSE;
269 0 : }//IsLostByFresnel()
270 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
271 : void AliHMPIDv1::GenFee(Float_t qtot)
272 : {
273 : // Generate FeedBack photons for the current particle. To be invoked from StepManager().
274 : // eloss=0 means photon so only pulse height distribution is to be analysed.
275 0 : TLorentzVector x4;
276 0 : TVirtualMC::GetMC()->TrackPosition(x4);
277 0 : Int_t iNphotons=TVirtualMC::GetMC()->GetRandom()->Poisson(0.02*qtot); //# of feedback photons is proportional to the charge of hit
278 0 : AliDebug(1,Form("N photons=%i",iNphotons));
279 : Int_t j;
280 0 : Float_t cthf, phif, enfp = 0, sthf, e1[3], e2[3], e3[3], vmod, uswop,dir[3], phi,pol[3], mom[4];
281 : //Generate photons
282 0 : for(Int_t i=0;i<iNphotons;i++){//feedbacks loop
283 0 : Double_t ranf[2];
284 0 : TVirtualMC::GetMC()->GetRandom()->RndmArray(2,ranf); //Sample direction
285 0 : cthf=ranf[0]*2-1.0;
286 0 : if(cthf<0) continue;
287 0 : sthf = TMath::Sqrt((1. - cthf) * (1. + cthf));
288 0 : phif = ranf[1] * 2 * TMath::Pi();
289 :
290 0 : if(Double_t randomNumber=TVirtualMC::GetMC()->GetRandom()->Rndm()<=0.57)
291 0 : enfp = 7.5e-9;
292 0 : else if(randomNumber<=0.7)
293 0 : enfp = 6.4e-9;
294 : else
295 : enfp = 7.9e-9;
296 :
297 :
298 0 : dir[0] = sthf * TMath::Sin(phif); dir[1] = cthf; dir[2] = sthf * TMath::Cos(phif);
299 0 : TVirtualMC::GetMC()->Gdtom(dir, mom, 2);
300 0 : mom[0]*=enfp; mom[1]*=enfp; mom[2]*=enfp;
301 0 : mom[3] = TMath::Sqrt(mom[0]*mom[0]+mom[1]*mom[1]+mom[2]*mom[2]);
302 :
303 : // Polarisation
304 0 : e1[0]= 0; e1[1]=-dir[2]; e1[2]= dir[1];
305 0 : e2[0]=-dir[1]; e2[1]= dir[0]; e2[2]= 0;
306 0 : e3[0]= dir[1]; e3[1]= 0; e3[2]=-dir[0];
307 :
308 : vmod=0;
309 0 : for(j=0;j<3;j++) vmod+=e1[j]*e1[j];
310 0 : if (!vmod) for(j=0;j<3;j++) {
311 0 : uswop=e1[j];
312 0 : e1[j]=e3[j];
313 0 : e3[j]=uswop;
314 : }
315 : vmod=0;
316 0 : for(j=0;j<3;j++) vmod+=e2[j]*e2[j];
317 0 : if (!vmod) for(j=0;j<3;j++) {
318 0 : uswop=e2[j];
319 0 : e2[j]=e3[j];
320 0 : e3[j]=uswop;
321 : }
322 :
323 0 : vmod=0; for(j=0;j<3;j++) vmod+=e1[j]*e1[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e1[j]*=vmod;
324 0 : vmod=0; for(j=0;j<3;j++) vmod+=e2[j]*e2[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e2[j]*=vmod;
325 :
326 0 : phi = TVirtualMC::GetMC()->GetRandom()->Rndm()* 2 * TMath::Pi();
327 0 : for(j=0;j<3;j++) pol[j]=e1[j]*TMath::Sin(phi)+e2[j]*TMath::Cos(phi);
328 0 : TVirtualMC::GetMC()->Gdtom(pol, pol, 2);
329 0 : Int_t outputNtracksStored;
330 0 : gAlice->GetMCApp()->PushTrack(1, //transport
331 0 : gAlice->GetMCApp()->GetCurrentTrackNumber(),//parent track
332 : 50000051, //PID
333 0 : mom[0],mom[1],mom[2],mom[3], //track momentum
334 0 : x4.X(),x4.Y(),x4.Z(),x4.T(), //track origin
335 0 : pol[0],pol[1],pol[2], //polarization
336 : kPFeedBackPhoton, //process ID
337 : outputNtracksStored, //on return how many new photons stored on stack
338 : 1.0); //weight
339 0 : }//feedbacks loop
340 0 : AliDebug(1,"Stop.");
341 0 : }//GenerateFeedbacks()
342 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
343 : void AliHMPIDv1::Hits2SDigits()
344 : {
345 : // Interface method ivoked from AliSimulation to create a list of sdigits corresponding to list of hits. Every hit generates one or more sdigits.
346 : // Arguments: none
347 : // Returns: none
348 0 : AliDebug(1,"Start.");
349 0 : for(Int_t iEvt=0;iEvt < GetLoader()->GetRunLoader()->GetNumberOfEvents();iEvt++){ //events loop
350 0 : GetLoader()->GetRunLoader()->GetEvent(iEvt); //get next event
351 :
352 0 : if(!GetLoader()->TreeH()) {GetLoader()->LoadHits(); }
353 0 : if(!GetLoader()->TreeS()) {GetLoader()->MakeTree("S"); MakeBranch("S");}//to
354 :
355 0 : for(Int_t iEnt=0;iEnt<GetLoader()->TreeH()->GetEntries();iEnt++){//prims loop
356 0 : GetLoader()->TreeH()->GetEntry(iEnt);
357 0 : Hit2Sdi(Hits(),SdiLst());
358 : }//prims loop
359 0 : GetLoader()->TreeS()->Fill();
360 0 : GetLoader()->WriteSDigits("OVERWRITE");
361 0 : SdiReset();
362 : }//events loop
363 0 : GetLoader()->UnloadHits();
364 0 : GetLoader()->UnloadSDigits();
365 0 : AliDebug(1,"Stop.");
366 0 : }//Hits2SDigits()
367 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
368 : void AliHMPIDv1::Hit2Sdi(TClonesArray *pHitLst,TClonesArray *pSdiLst)
369 : {
370 : // Converts list of hits to list of sdigits.
371 : // Arguments: pHitLst - list of hits provided not empty
372 : // pSDigLst - list of sdigits where to store the results
373 : // Returns: none
374 0 : for(Int_t iHit=0;iHit<pHitLst->GetEntries();iHit++){ //hits loop
375 0 : AliHMPIDHit *pHit=(AliHMPIDHit*)pHitLst->At(iHit); //get pointer to current hit
376 0 : pHit->Hit2Sdi(pSdiLst); //convert this hit to list of sdigits
377 : }//hits loop loop
378 0 : }//Hits2Sdi()
379 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
380 : void AliHMPIDv1::Digits2Raw()
381 : {
382 : // Interface method invoked by AliSimulation to create raw data streams from digits. Events loop is done in AliSimulation
383 : // Arguments: none
384 : // Returns: none
385 0 : AliDebug(1,"Start.");
386 0 : GetLoader()->LoadDigits();
387 0 : TTree * treeD = GetLoader()->TreeD();
388 0 : if(!treeD) {
389 0 : AliError("No digits tree!");
390 0 : return;
391 : }
392 0 : treeD->GetEntry(0);
393 :
394 : //AliHMPIDDigit::WriteRaw(DigLst());
395 : AliHMPIDRawStream *pRS=0x0;
396 0 : pRS->WriteRaw(DigLst());
397 :
398 0 : GetLoader()->UnloadDigits();
399 0 : AliDebug(1,"Stop.");
400 0 : }//Digits2Raw()
401 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
402 : Float_t AliHMPIDv1::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola)
403 : {
404 : // Correction for Fresnel ???????????
405 : // Arguments: ene - photon energy [GeV],
406 : // PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.)
407 : // Returns:
408 0 : Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,
409 : 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,
410 : 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5};
411 0 : Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05,
412 : 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11,
413 : 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95,
414 : 1.72,1.53};
415 0 : Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543,
416 : 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878,
417 : 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824,
418 : 1.714,1.498};
419 : Float_t xe=ene;
420 0 : Int_t j=Int_t(xe*10)-49;
421 0 : Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]);
422 0 : Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]);
423 :
424 : //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR
425 : //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197
426 :
427 0 : Float_t sinin=TMath::Sqrt((1.-pdoti)*(1.+pdoti));
428 0 : Float_t tanin=sinin/pdoti;
429 :
430 0 : Float_t c1=cn*cn-ck*ck-sinin*sinin;
431 0 : Float_t c2=4*cn*cn*ck*ck;
432 0 : Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1));
433 0 : Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1);
434 :
435 0 : Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2);
436 0 : Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2);
437 :
438 :
439 : //CORRECTION FACTOR FOR SURFACE ROUGHNESS
440 : //B.J. STAGG APPLIED OPTICS, 30(1991),4113
441 :
442 : Float_t sigraf=18.;
443 0 : Float_t lamb=1240/ene;
444 : Float_t fresn;
445 :
446 0 : Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb));
447 :
448 0 : if(pola)
449 : {
450 : Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S
451 0 : fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr));
452 0 : }
453 : else
454 0 : fresn=0.5*(rp+rs);
455 :
456 0 : fresn = fresn*rO;
457 0 : return fresn;
458 0 : }//Fresnel()
459 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
460 : void AliHMPIDv1::Print(Option_t *option)const
461 : {
462 : // Debug printout
463 0 : TObject::Print(option);
464 0 : }//void AliHMPID::Print(Option_t *option)const
465 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
466 : Bool_t AliHMPIDv1::Raw2SDigits(AliRawReader *pRR)
467 : {
468 : // Interface methode ivoked from AliSimulation to create a list of sdigits from raw digits. Events loop is done in AliSimulation
469 : // Arguments: pRR- raw reader
470 : // Returns: kTRUE on success (currently ignored in AliSimulation::ConvertRaw2SDigits())
471 : //AliHMPIDDigit sdi; //tmp sdigit, raw digit will be converted to it
472 :
473 0 : if(!GetLoader()->TreeS()) {MakeTree("S"); MakeBranch("S");}
474 :
475 0 : TClonesArray *pSdiLst=SdiLst(); Int_t iSdiCnt=0; //tmp list of sdigits for all chambers
476 0 : AliHMPIDRawStream stream(pRR);
477 0 : while(stream.Next())
478 : {
479 0 : for(Int_t iPad=0;iPad<stream.GetNPads();iPad++) {
480 0 : AliHMPIDDigit sdi(stream.GetPadArray()[iPad],stream.GetChargeArray()[iPad]);
481 0 : new((*pSdiLst)[iSdiCnt++]) AliHMPIDDigit(sdi); //add this digit to the tmp list
482 0 : }
483 : }
484 :
485 0 : GetLoader()->TreeS()->Fill(); GetLoader()->WriteSDigits("OVERWRITE");//write out sdigits
486 0 : SdiReset();
487 : return kTRUE;
488 0 : }//Raw2SDigits
489 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
490 : void AliHMPIDv1::StepCount()
491 : {
492 : // Count number of ckovs created
493 0 : }
494 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
495 : void AliHMPIDv1::StepHistory()
496 : {
497 : // This methode is invoked from StepManager() in order to print out
498 : static Int_t iStepN;
499 : const char *sParticle;
500 0 : switch(TVirtualMC::GetMC()->TrackPid()){
501 0 : case kProton: sParticle="PROTON" ;break;
502 0 : case kNeutron: sParticle="neutron" ;break;
503 0 : case kGamma: sParticle="gamma" ;break;
504 0 : case 50000050: sParticle="CKOV" ;break;
505 0 : case kPi0: sParticle="Pi0" ;break;
506 0 : case kPiPlus: sParticle="Pi+" ;break;
507 0 : case kPiMinus: sParticle="Pi-" ;break;
508 0 : case kElectron: sParticle="electron" ;break;
509 0 : default: sParticle="not known" ;break;
510 : }
511 :
512 0 : TString flag="fanny combination";
513 0 : if(TVirtualMC::GetMC()->IsTrackAlive()) {
514 0 : if(TVirtualMC::GetMC()->IsTrackEntering()) flag="enters to";
515 0 : else if(TVirtualMC::GetMC()->IsTrackExiting()) flag="exits from";
516 0 : else if(TVirtualMC::GetMC()->IsTrackInside()) flag="inside";
517 : } else {
518 0 : if(TVirtualMC::GetMC()->IsTrackStop()) flag="stopped in";
519 : }
520 :
521 0 : Int_t vid=0,copy=0;
522 0 : TString path=TVirtualMC::GetMC()->CurrentVolName(); path.Prepend("-");path.Prepend(TVirtualMC::GetMC()->CurrentVolOffName(1));//current volume and his mother are always there
523 0 : vid=TVirtualMC::GetMC()->CurrentVolOffID(2,copy); if(vid) {path.Prepend("-");path.Prepend(TVirtualMC::GetMC()->VolName(vid));}
524 0 : vid=TVirtualMC::GetMC()->CurrentVolOffID(3,copy); if(vid) {path.Prepend("-");path.Prepend(TVirtualMC::GetMC()->VolName(vid));}
525 :
526 0 : Printf("Step %i: %s (%i) %s %s m=%.6f GeV q=%.1f dEdX=%.4f",iStepN,sParticle,TVirtualMC::GetMC()->TrackPid(),flag.Data(),path.Data(),TVirtualMC::GetMC()->TrackMass(),TVirtualMC::GetMC()->TrackCharge(),TVirtualMC::GetMC()->Edep()*1e9);
527 :
528 0 : Printf("Step %i: tid=%i flags alive=%i disap=%i enter=%i exit=%i inside=%i out=%i stop=%i new=%i",
529 0 : iStepN, gAlice->GetMCApp()->GetCurrentTrackNumber(),
530 0 : TVirtualMC::GetMC()->IsTrackAlive(), TVirtualMC::GetMC()->IsTrackDisappeared(),TVirtualMC::GetMC()->IsTrackEntering(), TVirtualMC::GetMC()->IsTrackExiting(),
531 0 : TVirtualMC::GetMC()->IsTrackInside(),TVirtualMC::GetMC()->IsTrackOut(), TVirtualMC::GetMC()->IsTrackStop(), TVirtualMC::GetMC()->IsNewTrack());
532 :
533 0 : Float_t a,z,den,rad,abs; a=z=den=rad=abs=-1;
534 0 : Int_t mid=TVirtualMC::GetMC()->CurrentMaterial(a,z,den,rad,abs);
535 0 : Printf("Step %i: id=%i a=%7.2f z=%7.2f den=%9.4f rad=%9.2f abs=%9.2f\n\n",iStepN,mid,a,z,den,rad,abs);
536 0 : iStepN++;
537 0 : }//StepHistory()
538 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
539 : void AliHMPIDv1::StepManager()
540 : {
541 : // Full Step Manager.
542 : // Arguments: none
543 : // Returns: none
544 : // StepHistory(); return; //uncomment to print tracks history
545 : // StepCount(); return; //uncomment to count photons
546 :
547 0 : Int_t copy; //volume copy aka node
548 :
549 : //Treat photons
550 0 : if((TVirtualMC::GetMC()->TrackPid()==50000050||TVirtualMC::GetMC()->TrackPid()==50000051)&&TVirtualMC::GetMC()->CurrentVolID(copy)==fIdPc){ //photon (Ckov or feedback) hit PC (fIdPc)
551 0 : if(TVirtualMC::GetMC()->Edep()>0){ //photon survided QE test i.e. produces electron
552 0 : if(IsLostByFresnel()){ TVirtualMC::GetMC()->StopTrack(); return;} //photon lost due to fersnel reflection on PC
553 0 : TVirtualMC::GetMC()->CurrentVolOffID(2,copy); //current chamber since geomtry tree is HMPID-Rppf-Rpc
554 0 : Int_t tid= TVirtualMC::GetMC()->GetStack()->GetCurrentTrackNumber(); //take TID
555 0 : Int_t pid= TVirtualMC::GetMC()->TrackPid(); //take PID
556 0 : Float_t etot= TVirtualMC::GetMC()->Etot(); //total hpoton energy, [GeV]
557 0 : Double_t x[3]; TVirtualMC::GetMC()->TrackPosition(x[0],x[1],x[2]); //take MARS position at entrance to PC
558 0 : Float_t hitTime=(Float_t)TVirtualMC::GetMC()->TrackTime(); //hit formation time
559 0 : Float_t xl,yl; AliHMPIDParam::Instance()->Mars2Lors(copy,x,xl,yl); //take LORS position
560 0 : new((*fHits)[fNhits++])AliHMPIDHit(copy,etot,pid,tid,xl,yl,hitTime,x); //HIT for photon, position at P, etot will be set to Q
561 0 : GenFee(etot); //generate feedback photons etot is modified in hit ctor to Q of hit
562 0 : }//photon hit PC and DE >0
563 : }//photon hit PC
564 :
565 : //Treat charged particles
566 : static Float_t eloss; //need to store mip parameters between different steps
567 : static Double_t in[3];
568 0 : if(TVirtualMC::GetMC()->TrackCharge() && TVirtualMC::GetMC()->CurrentVolID(copy)==fIdAmpGap){ //charged particle in amplification gap (fIdAmpGap)
569 0 : if(TVirtualMC::GetMC()->IsTrackEntering()||TVirtualMC::GetMC()->IsNewTrack()) { //entering or newly created
570 0 : eloss=0; //reset Eloss collector
571 0 : TVirtualMC::GetMC()->TrackPosition(in[0],in[1],in[2]); //take position at the entrance
572 0 : }else if(TVirtualMC::GetMC()->IsTrackExiting()||TVirtualMC::GetMC()->IsTrackStop()||TVirtualMC::GetMC()->IsTrackDisappeared()){ //exiting or disappeared
573 0 : eloss +=TVirtualMC::GetMC()->Edep(); //take into account last step Eloss
574 0 : TVirtualMC::GetMC()->CurrentVolOffID(1,copy); //take current chamber since geometry tree is HMPID-Rgap
575 0 : Int_t tid= TVirtualMC::GetMC()->GetStack()->GetCurrentTrackNumber(); //take TID
576 0 : Int_t pid= TVirtualMC::GetMC()->TrackPid(); //take PID
577 0 : Double_t out[3]; TVirtualMC::GetMC()->TrackPosition(out[0],out[1],out[2]); //take MARS position at exit
578 0 : Float_t hitTime= (Float_t)TVirtualMC::GetMC()->TrackTime(); //hit formation time
579 0 : out[0]=0.5*(out[0]+in[0]); //>
580 0 : out[1]=0.5*(out[1]+in[1]); //take hit position at the anod plane
581 0 : out[2]=0.5*(out[2]+in[2]); //>
582 0 : Float_t xl,yl;AliHMPIDParam::Instance()->Mars2Lors(copy,out,xl,yl); //take LORS position
583 0 : new((*fHits)[fNhits++])AliHMPIDHit(copy,eloss,pid,tid,xl,yl,hitTime,out); //HIT for MIP, position near anod plane, eloss will be set to Q
584 0 : GenFee(eloss); //generate feedback photons
585 0 : }else //just going inside
586 0 : eloss += TVirtualMC::GetMC()->Edep(); //collect this step eloss
587 : }//MIP in GAP
588 0 : }//StepManager()
589 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|