Line data Source code
1 : // **************************************************************************
2 : // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 : // * *
4 : // * Author: The ALICE Off-line Project. *
5 : // * Contributors are mentioned in the code where appropriate. *
6 : // * *
7 : // * Permission to use, copy, modify and distribute this software and its *
8 : // * documentation strictly for non-commercial purposes is hereby granted *
9 : // * without fee, provided that the above copyright notice appears in all *
10 : // * copies and that both the copyright notice and this permission notice *
11 : // * appear in the supporting documentation. The authors make no claims *
12 : // * about the suitability of this software for any purpose. It is *
13 : // * provided "as is" without express or implied warranty. *
14 : // **************************************************************************
15 :
16 :
17 : #include "AliHMPIDv2.h" //class header
18 : #include "AliHMPIDParam.h" //StepManager()
19 : #include "AliHMPIDHit.h" //Hits2SDigs(),StepManager()
20 : #include "AliHMPIDDigit.h" //Digits2Raw(), Raw2SDigits()
21 : #include "AliHMPIDRawStream.h" //Digits2Raw(), Raw2SDigits()
22 : #include "AliRawReader.h" //Raw2SDigits()
23 : #include "AliTrackReference.h"
24 : #include <TVirtualMC.h> //StepManager() for TVirtualMC::GetMC()
25 : #include <TPDGCode.h> //StepHistory()
26 : #include <AliStack.h> //StepManager(),Hits2SDigits()78.6
27 : #include <AliLoader.h> //Hits2SDigits()
28 : #include <AliRunLoader.h> //Hits2SDigits()
29 : #include <AliMC.h> //StepManager()
30 : #include <AliRun.h> //CreateMaterials()
31 : #include <AliMagF.h> //CreateMaterials()
32 : #include "AliGeomManager.h" //AddAlignableVolumes()
33 : #include <AliCDBEntry.h> //CreateMaterials()
34 : #include <AliCDBManager.h> //CreateMaterials()
35 : #include <TF1.h> //DefineOpticalProperties()
36 : #include <TF2.h> //DefineOpticalProperties()
37 : #include <TGeoGlobalMagField.h>
38 : #include <TGeoPhysicalNode.h> //AddAlignableVolumes()
39 : #include <TLorentzVector.h> //IsLostByFresnel()
40 : #include <TTree.h>
41 :
42 12 : ClassImp(AliHMPIDv2)
43 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
44 : void AliHMPIDv2::AddAlignableVolumes()const
45 : {
46 : // Associates the symbolic volume name with the corresponding volume path. Interface method from AliModule invoked from AliMC
47 : // Arguments: none
48 : // Returns: none
49 :
50 : AliGeomManager::ELayerID idHMPID = AliGeomManager::kHMPID;
51 : Int_t modUID, modnum = 0;
52 :
53 0 : TGeoHMatrix *pGm = new TGeoHMatrix;
54 0 : Double_t trans[3]={0.5*131.24,0.5*126.16,0}; //translation from LORS to TGeo RS (half size AllX, half size allY,0)
55 0 : pGm->SetTranslation(trans);
56 :
57 0 : Double_t ph[7]={10.,10., 30.,30.,30. ,50.,50};
58 :
59 0 : for(Int_t iCh=AliHMPIDParam::kMinCh;iCh<=AliHMPIDParam::kMaxCh;iCh++) {
60 0 : modUID = AliGeomManager::LayerToVolUID(idHMPID,modnum++);
61 0 : if(!gGeoManager->SetAlignableEntry(Form("/HMPID/Chamber%i",iCh),Form("ALIC_1/Hmp_%i",iCh),modUID))
62 0 : AliError("AliHMPIDv3::Unable to set alignable entry!!"); //aligment without AliCluster3D
63 : //Get Tracking To Local matricies for alignment with AliCluster3D
64 0 : TGeoPNEntry *eCh = gGeoManager->GetAlignableEntryByUID(modUID);
65 0 : TGeoHMatrix *globMatrix = eCh->GetGlobalOrig();
66 :
67 : //Double_t phi = 20.0 * ((iCh+1) / 3) + 10.0;
68 0 : Double_t phi = ph[iCh];
69 0 : TGeoHMatrix *t2l = new TGeoHMatrix();
70 0 : t2l->RotateZ(phi);
71 0 : t2l->MultiplyLeft(&(globMatrix->Inverse()));
72 0 : eCh->SetMatrix(t2l);
73 : }//iCh loop
74 0 : }
75 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
76 : void AliHMPIDv2::CreateMaterials()
77 : {
78 : // Definition of available HMPID materials
79 : // Arguments: none
80 : // Returns: none
81 0 : AliDebug(1,"Start v2 HMPID.");
82 :
83 : //clm update material definition later on from Antonello
84 :
85 : //data from PDG booklet 2002 density [gr/cm^3] rad len [cm] abs len [cm]
86 0 : Float_t aAir[4]={12,14,16,36} , zAir[4]={6,7,8,18} , wAir[4]={0.000124,0.755267,0.231781,0.012827} , dAir=0.00120479; Int_t nAir=4;//mixture 0.9999999
87 0 : Float_t aC6F14[2]={ 12.01 , 18.99} , zC6F14[2]={ 6 , 9} , wC6F14[2]={6 , 14} , dC6F14=1.68 ; Int_t nC6F14=-2;
88 0 : Float_t aSiO2[2]={ 28.09 , 15.99} , zSiO2[2]={14 , 8} , wSiO2[2]={1 , 2} , dSiO2=2.64 ; Int_t nSiO2=-2;
89 0 : Float_t aCH4[2]={ 12.01 , 1.01} , zCH4[2]={ 6 , 1} , wCH4[2]={1 , 4} , dCH4=7.17e-4 ; Int_t nCH4=-2;
90 : // not necessary...PCB properties instead! Float_t aCsI[2]={132.90 ,126.90} , zCsI[2]={55 ,53} , wCsI[2]={1 , 1} , dCsI=0.1 ; Int_t nCsI=-2;
91 :
92 0 : Float_t aRoha = 12.01 , zRoha = 6 , dRoha = 0.10 , radRoha = 18.80 , absRoha = 86.3/dRoha; //special material- quasi quartz
93 0 : Float_t aCu = 63.55 , zCu = 29 , dCu = 8.96 , radCu = 1.43 , absCu = 134.9/dCu ;
94 0 : Float_t aW =183.84 , zW = 74 , dW = 19.30 , radW = 0.35 , absW = 185.0/dW ;
95 0 : Float_t aAl = 26.98 , zAl = 13 , dAl = 2.70 , radAl = 8.90 , absAl = 106.4/dAl ;
96 0 : Float_t aAr = 39.94 , zAr = 18 , dAr = 1.396e-3, radAr = 14.0 , absAr = 117.2/dAr ;
97 :
98 : Int_t matId=0; //tmp material id number
99 : Int_t unsens = 0, sens=1; //sensitive or unsensitive medium
100 0 : Int_t itgfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); //type of field intergration 0 no field -1 user in guswim 1 Runge Kutta 2 helix 3 const field along z
101 0 : Float_t maxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); //max field value
102 : Float_t tmaxfd = -10.0; //max deflection angle due to magnetic field in one step
103 : Float_t deemax = - 0.2; //max fractional energy loss in one step
104 : Float_t stemax = - 0.1; //max step allowed [cm]
105 : Float_t epsil = 0.001; //abs tracking precision [cm]
106 : Float_t stmin = - 0.001; //min step size [cm] in continius process transport, negative value: choose it automatically
107 :
108 : // PCB copmposed mainly by G10 (Si,C,H,O) -> CsI is negligible (<500nm thick)
109 : // So what is called CsI has the optical properties of CsI, but the composition of G-10 (for delta elec, etc production...)
110 :
111 0 : Float_t aG10[4] = {28.09,12.01,1.01,16.00};
112 0 : Float_t zG10[4] = {14., 6., 1., 8.};
113 0 : Float_t wG10[4] = {0.129060,0.515016,0.061873,0.294050};
114 : Float_t dG10 = 1.7;
115 : Int_t nG10 = 4;
116 :
117 0 : AliMixture(++matId,"Air" ,aAir ,zAir ,dAir ,nAir ,wAir ); AliMedium(kAir ,"Air" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
118 0 : AliMixture(++matId,"C6F14",aC6F14,zC6F14,dC6F14,nC6F14,wC6F14); AliMedium(kC6F14,"C6F14",matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
119 0 : AliMixture(++matId,"SiO2" ,aSiO2 ,zSiO2 ,dSiO2 ,nSiO2 ,wSiO2 ); AliMedium(kSiO2 ,"SiO2" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
120 0 : AliMixture(++matId,"CH4" ,aCH4 ,zCH4 ,dCH4 ,nCH4 ,wCH4 ); AliMedium(kCH4 ,"CH4" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
121 : // AliMixture(++matId,"CsI" ,aCsI ,zCsI ,dCsI ,nCsI ,wCsI ); AliMedium(kCsI ,"CsI" ,matId, sens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);//sensitive
122 0 : AliMixture(++matId,"CsI+PCB",aG10 , zG10, dG10,nG10 ,wG10 ); AliMedium(kCsI ,"CsI" ,matId, sens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);//sensitive
123 :
124 0 : AliMixture(++matId ,"Neo" ,aSiO2 ,zSiO2 ,dSiO2 ,nSiO2 ,wSiO2 ); AliMedium(kNeo ,"Neo" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); //clm neoceram
125 0 : AliMaterial(++matId,"Roha",aRoha,zRoha,dRoha,radRoha,absRoha); AliMedium(kRoha ,"Roha" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); //Roha->honeycomb
126 :
127 :
128 0 : AliMaterial(++matId,"Cu" ,aCu ,zCu ,dCu ,radCu ,absCu ); AliMedium(kCu ,"Cu" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
129 0 : AliMaterial(++matId,"W" ,aW ,zW ,dW ,radW ,absW ); AliMedium(kW ,"W" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
130 0 : AliMaterial(++matId,"Al" ,aAl ,zAl ,dAl ,radAl ,absAl ); AliMedium(kAl ,"Al" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
131 0 : AliMaterial(++matId,"Ar" ,aAr ,zAr ,dAr ,radAr ,absAr ); AliMedium(kAr ,"Ar" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);
132 :
133 : //InitProperties();
134 :
135 0 : }//void AliHMPID::CreateMaterials()
136 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
137 : //void AliHMPIDv2::InitProperties()
138 : //{
139 : /*
140 : * HMPID
141 : * ====
142 : *
143 : * GAM ELEC NHAD CHAD MUON EBREM MUHAB EDEL MUDEL MUPA ANNI BREM COMP DCAY DRAY HADR LOSS MULS PAIR PHOT RAYL
144 : * Quarz Window (>1000 keV delta-electrons)
145 : HMPID 3 1.e-4 1.e-4 1.e-4 -1. 1.e-4 -1. -1. 1.e-3 1.e-3 -1. -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1
146 : * Freon Radiator (> 500 keV delta-electrons)
147 : HMPID 4 1.e-4 1.e-4 1.e-4 -1. 1.e-4 -1. -1. 5.e-4 5.e-4 -1. -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1
148 : * Methane Gap (> 100 keV delta-electrons)
149 : HMPID 5 5.e-5 1.e-5 1.e-4 -1. 1.e-4 -1. -1. 1.e-4 1.e-4 -1. -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1
150 : * Sensitive Volume (> 50 keV delta-electrons)
151 : HMPID 9 1.e-5 1.e-5 1.e-4 -1. 1.e-4 -1. -1. 5.e-5 5.e-5 -1. -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1
152 : * CSI (> 50 keV delta-electrons)
153 : HMPID 6 1.e-5 1.e-5 1.e-4 -1. 1.e-4 -1. -1. 5.e-5 5.e-5 -1. -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1
154 : * PCB backplane (> 50 keV delta-electrons)
155 : HMPID 12 1.e-5 1.e-5 1.e-4 -1. 1.e-4 -1. -1. 5.e-5 5.e-5 -1. -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1
156 :
157 : Int_t *idtmed = fIdtmed->GetArray();
158 : Int_t imed;
159 :
160 : imed = kSiO2; // * Quarz Window (>1000 keV delta-electrons)
161 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",1.e-4);
162 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",1.e-4);
163 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
164 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
165 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,1.e-3);
166 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",1.e-3);
167 :
168 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
169 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
170 :
171 : imed = kC6F14; // * Freon Radiator (> 500 keV delta-electrons)
172 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",1.e-4);
173 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",1.e-4);
174 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
175 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
176 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,5.e-4);
177 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",5.e-4);
178 :
179 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
180 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
181 :
182 : imed = kCH4; // * Methane Gap (> 100 keV delta-electrons)
183 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",5.e-5);
184 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",5.e-5);
185 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
186 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
187 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,1.e-4);
188 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",1.e-4);
189 :
190 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
191 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
192 :
193 : imed = kCsI; // * CSI (> 50 keV delta-electrons)
194 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",1.e-5);
195 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",1.e-5);
196 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
197 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
198 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,5.e-5);
199 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",5.e-5);
200 :
201 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
202 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
203 :
204 : imed = kAl; // * Alluminium (> 50 keV delta-electrons)
205 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",1.e-5);
206 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",1.e-5);
207 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
208 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
209 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,5.e-5);
210 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",5.e-5);
211 :
212 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
213 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
214 :
215 : imed = kCu; // * Copper (> 50 keV delta-electrons)
216 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",1.e-5);
217 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",1.e-5);
218 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
219 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
220 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,5.e-5);
221 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",5.e-5);
222 :
223 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
224 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
225 :
226 : imed = kW; // * Tungsten (> 50 keV delta-electrons)
227 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTGAM",1.e-5);
228 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTELE",1.e-5);
229 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTNEU",1.e-4);
230 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTMUO",1.e-4);
231 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DCUTE" ,5.e-5);
232 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "CUTHAD",5.e-5);
233 :
234 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "DRAY",1);
235 : TVirtualMC::GetMC()->Gstpar(idtmed[imed], "LOSS",1);
236 :
237 : }*/
238 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
239 : void AliHMPIDv2::CreateGeometry()
240 : {
241 : //Creates detailed geometry simulation (currently GEANT volumes tree)
242 0 : AliDebug(1,"Start main.");
243 0 : if(!TVirtualMC::GetMC()->IsRootGeometrySupported()) return;
244 :
245 : Double_t cm=1,mm=0.1*cm,um=0.001*mm;//default is cm
246 :
247 0 : TGeoMedium *al =gGeoManager->GetMedium("HMPID_Al");
248 0 : TGeoMedium *ch4 =gGeoManager->GetMedium("HMPID_CH4");
249 0 : TGeoMedium *roha =gGeoManager->GetMedium("HMPID_Roha");
250 0 : TGeoMedium *neoc =gGeoManager->GetMedium("HMPID_Neo");
251 0 : TGeoMedium *c6f14=gGeoManager->GetMedium("HMPID_C6F14");
252 0 : TGeoMedium *sio2 =gGeoManager->GetMedium("HMPID_SiO2");
253 0 : TGeoMedium *cu =gGeoManager->GetMedium("HMPID_Cu");
254 0 : TGeoMedium *w =gGeoManager->GetMedium("HMPID_W");
255 0 : TGeoMedium *csi =gGeoManager->GetMedium("HMPID_CsI");
256 0 : TGeoMedium *ar =gGeoManager->GetMedium("HMPID_Ar");
257 :
258 0 : TGeoVolume *hmp=gGeoManager->MakeBox ("Hmp",ch4,1681*mm/2, 1466*mm/2,(2*80*mm+2*60*mm)/2);//2033P1 z from p84 TDR
259 :
260 0 : TString title=GetTitle();
261 0 : if(title.Contains("TestBeam")){
262 0 : gGeoManager->GetVolume("ALIC")->AddNode(hmp,0);
263 : }else{
264 0 : for(Int_t iCh=AliHMPIDParam::kMinCh;iCh<=AliHMPIDParam::kMaxCh;iCh++){//place 7 chambers
265 0 : TGeoHMatrix *pMatrix=new TGeoHMatrix;
266 0 : IdealPosition(iCh,pMatrix);
267 0 : gGeoManager->GetVolume("ALIC")->AddNode(hmp,iCh,pMatrix);
268 : }
269 : }
270 :
271 0 : TGeoRotation *rot=new TGeoRotation("HwireRot"); rot->RotateY(90); //rotate wires around Y to be along X (initially along Z)
272 0 : TGeoVolume *sbo=gGeoManager->MakeBox ("Hsbo",ch4 , 1419*mm/2 , 1378.00*mm/2 , 50.5*mm/2);//2072P1
273 0 : TGeoVolume *cov=gGeoManager->MakeBox ("Hcov",al , 1419*mm/2 , 1378.00*mm/2 , 0.5*mm/2);
274 0 : TGeoVolume *hon=gGeoManager->MakeBox ("Hhon",roha , 1359*mm/2 , 1318.00*mm/2 , 49.5*mm/2);
275 0 : TGeoVolume *rad=gGeoManager->MakeBox ("Hrad",c6f14, 1330*mm/2 , 413.00*mm/2 , 24.0*mm/2); //2011P1
276 0 : TGeoVolume *neo=gGeoManager->MakeBox ("Hneo",neoc , 1330*mm/2 , 413.00*mm/2 , 4.0*mm/2);
277 0 : TGeoVolume *win=gGeoManager->MakeBox ("Hwin",sio2 , 1330*mm/2 , 413.00*mm/2 , 5.0*mm/2);
278 0 : TGeoVolume *si1=gGeoManager->MakeBox ("Hsi1",sio2 , 1330*mm/2 , 5.00*mm/2 , 15.0*mm/2);
279 0 : TGeoVolume *si2=gGeoManager->MakeBox ("Hsi2",neoc , 10*mm/2 , 403.00*mm/2 , 15.0*mm/2);
280 0 : TGeoVolume *spa=gGeoManager->MakeTube("Hspa",sio2 , 0*mm , 5.00*mm , 15.0*mm/2);
281 0 : TGeoVolume *fr4=gGeoManager->MakeBox ("Hfr4",ch4 , 1407*mm/2 , 1366.00*mm/2 , 15.0*mm/2);//2043P1
282 0 : TGeoVolume *f4a=gGeoManager->MakeBox ("Hf4a",al , 1407*mm/2 , 1366.00*mm/2 , 10.0*mm/2);
283 0 : TGeoVolume *f4i=gGeoManager->MakeBox ("Hf4i",ch4 , 1323*mm/2 , 1296.00*mm/2 , 10.0*mm/2);
284 0 : TGeoVolume *col=gGeoManager->MakeTube("Hcol",cu , 0*mm , 100.00*um , 1323.0*mm/2);
285 0 : TGeoVolume *sec=gGeoManager->MakeBox ("Hsec",ch4 , 648*mm/2 , 411.00*mm/2 , 6.2*mm/2);//sec=gap
286 :
287 : Double_t cellx=8.04*mm,celly=8.4*mm; Int_t nPadX=80, nPadY=48;
288 0 : TGeoVolume *gap=gGeoManager->MakeBox ("Hgap",ch4 , cellx*nPadX/2 , celly*nPadY/2 , 6.2*mm/2); //x=8.04*80 y=8.4*48 z=pad+pad-ano+marign 2006p1
289 0 : TGeoVolume *row= gap->Divide ("Hrow",2,nPadY,0,0);//along Y->48 rows
290 0 : TGeoVolume *cel= row->Divide ("Hcel",1,nPadX,0,0);//along X->80 cells
291 0 : TGeoVolume *cat=gGeoManager->MakeTube("Hcat",cu , 0.00*mm , 50.00*um , cellx/2);
292 0 : TGeoVolume *ano=gGeoManager->MakeTube("Hano",w , 0.00*mm , 20.00*um , cellx/2);
293 0 : TGeoVolume *pad=gGeoManager->MakeBox ("Hpad",csi , 7.54*mm/2 , 7.90*mm/2 , 1.7*mm/2); //2006P1 PCB material...
294 0 : TGeoVolume *fr1=gGeoManager->MakeBox ("Hfr1",al , 1463*mm/2 , 1422.00*mm/2 , 58.3*mm/2);//2040P1
295 0 : TGeoVolume *fr1up=gGeoManager->MakeBox ("Hfr1up",ch4,(1426.00-37.00)*mm/2 , (1385.00-37.00)*mm/2 , 20.0*mm/2);//2040P1
296 0 : TGeoVolume *fr1perUpBig=gGeoManager->MakeBox ("Hfr1perUpBig",ch4,1389*mm/2,35*mm/2,10*mm/2);
297 0 : TGeoVolume *fr1perUpSma=gGeoManager->MakeBox ("Hfr1perUpSma",ch4,35*mm/2,(1385-37-2*35)*mm/2,10*mm/2);
298 0 : TGeoVolume *fr1perDowBig=gGeoManager->MakeBox ("Hfr1perDowBig",ch4,1389*mm/2,46*mm/2,2.3*mm/2);
299 0 : TGeoVolume *fr1perDowSma=gGeoManager->MakeBox ("Hfr1perDowSma",ch4,46*mm/2,(1385-37-2*46)*mm/2,2.3*mm/2);
300 :
301 0 : TGeoVolume *ppf=gGeoManager->MakeBox ("Hppf",al , 648*mm/2 , 411.00*mm/2 , 38.3*mm/2);//2001P2
302 0 : TGeoVolume *lar=gGeoManager->MakeBox ("Hlar",ar , 181*mm/2 , 89.25*mm/2 , 38.3*mm/2);//2001P2
303 0 : TGeoVolume *smo=gGeoManager->MakeBox ("Hsmo",ar , 114*mm/2 , 89.25*mm/2 , 38.3*mm/2);//2001P2
304 :
305 :
306 :
307 0 : TGeoVolume *fr3= gGeoManager->MakeBox("Hfr3", al, 1463*mm/2, 1422*mm/2, 34*mm/2);//2041P1
308 0 : TGeoVolume *fr3up= gGeoManager->MakeBox("Hfr3up", ch4, 1323*mm/2, 1282*mm/2, 20*mm/2);//2041P1
309 0 : TGeoVolume *fr3down=gGeoManager->MakeBox("Hfr3down", ch4, 1437*mm/2, 1370*mm/2, 14*mm/2);//2041P1
310 :
311 :
312 :
313 : // ^ Y z= z=-12mm z=98.25mm ALIC->7xHmp (virtual)-->1xHsbo (virtual) --->2xHcov (real) 2072P1
314 : // | ____________________________________ | |-->1xHhon (real) 2072P1
315 : // | | ______ ____ ______ | |
316 : // | | | | | * | | | |->3xHrad (virtual) --->1xHneo (real) 2011P1
317 : // | |50.5mm| |24mm| * |45.5mm| | | |-->1xHwin (real) 2011P1
318 : // | | | | | * | | | | |-->2xHsi1 (real) 2011P1
319 : // | | | |____| * |______| | | |-->2xHsi2 (real) 2011P1
320 : // | | | ____ * ______ | | |->30xHspa (real) 2011P1
321 : // | | | | | * | | | |
322 : // | | | | | * | | | |->1xHfr4 (vitual) --->1xHf4a (real)---->1xHf4i(virtual) 2043P1
323 : // | | sb | | rad| * | | | | |-->322xHcol (real) 2043P1
324 : // | | | |____| * |______| | |
325 : // | | | ____ * ______ | |->1xHfr1 (real) --> 6xHppf(real) ---->8xHlar (virtual) 2001P1
326 : // | | | | | * | | | | |--->8xHsmo (virtual) 2001P1
327 : // | | | | | * | | | |
328 : // | | | | | * | | | |-> 6xHgap (virtual) --->48xHrow (virtual) -->80xHcel (virtual) -->4xHcat (real) from p84 TDR
329 : // | |______| |____| * |______| | |-->2xHano (real) from p84 TDR
330 : // |____________________________________| |-->1xHpad (real) from p84 TDR
331 : // --->Z
332 0 : hmp->AddNode(sbo ,1,new TGeoTranslation( 0*mm, 0*mm, -73.75*mm)); //p.84 TDR
333 0 : sbo->AddNode(hon ,1,new TGeoTranslation( 0*mm,0*mm, 0*mm)); //2072P1
334 0 : sbo->AddNode(cov ,1,new TGeoTranslation( 0*mm,0*mm, +25*mm));
335 0 : sbo->AddNode(cov ,2,new TGeoTranslation( 0*mm,0*mm, -25*mm));
336 0 : hmp->AddNode(rad,2,new TGeoTranslation( 0*mm,+434*mm, -12.00*mm));
337 0 : hmp->AddNode(rad,1,new TGeoTranslation( 0*mm, 0*mm, -12.00*mm));
338 0 : hmp->AddNode(rad,0,new TGeoTranslation( 0*mm,-434*mm, -12.00*mm));
339 0 : rad->AddNode(neo,1,new TGeoTranslation( 0*mm, 0*mm, -10.0*mm));
340 0 : rad->AddNode(win,1,new TGeoTranslation( 0*mm, 0*mm, 9.5*mm));
341 0 : rad->AddNode(si1,1,new TGeoTranslation( 0*mm,-204*mm, -0.5*mm)); rad->AddNode(si1,2,new TGeoTranslation( 0*mm,+204*mm, -0.5*mm));
342 0 : rad->AddNode(si2,1,new TGeoTranslation(-660*mm, 0*mm, -0.5*mm)); rad->AddNode(si2,2,new TGeoTranslation(+660*mm, 0*mm, -0.5*mm));
343 0 : for(Int_t i=0;i<3;i++) for(Int_t j=0;j<10;j++) rad->AddNode(spa,10*i+j,new TGeoTranslation(-1330*mm/2+116*mm+j*122*mm,(i-1)*105*mm,-0.5*mm));
344 0 : hmp->AddNode(fr4,1,new TGeoTranslation( 0*mm, 0*mm, 9.00*mm)); //p.84 TDR
345 0 : for(int i=1;i<=322;i++) fr4->AddNode(col,i,new TGeoCombiTrans( 0*mm, -1296/2*mm+i*4*mm,-5*mm,rot)); //F4 2043P1
346 0 : fr4->AddNode(f4a,1,new TGeoTranslation( 0*mm,0*mm, 2.5*mm));
347 0 : f4a->AddNode(f4i,1,new TGeoTranslation( 0*mm,0*mm, 0*mm));
348 0 : hmp->AddNode(sec,4,new TGeoTranslation(-335*mm,+433*mm, 78.6*mm)); hmp->AddNode(sec,5,new TGeoTranslation(+335*mm,+433*mm, 78.6*mm));
349 0 : hmp->AddNode(sec,2,new TGeoTranslation(-335*mm, 0*mm, 78.6*mm)); hmp->AddNode(sec,3,new TGeoTranslation(+335*mm, 0*mm, 78.6*mm));
350 0 : hmp->AddNode(sec,0,new TGeoTranslation(-335*mm,-433*mm, 78.6*mm)); hmp->AddNode(sec,1,new TGeoTranslation(+335*mm,-433*mm, 78.6*mm));
351 0 : sec->AddNode(gap,1,new TGeoTranslation(0,0,0.*mm));
352 0 : cel->AddNode(cat,1,new TGeoCombiTrans (0, 3.15*mm , -2.70*mm , rot)); //4 cathode wires
353 0 : cel->AddNode(ano,1,new TGeoCombiTrans (0, 2.00*mm , -0.29*mm , rot)); //2 anod wires
354 0 : cel->AddNode(cat,2,new TGeoCombiTrans (0, 1.05*mm , -2.70*mm , rot));
355 0 : cel->AddNode(cat,3,new TGeoCombiTrans (0, -1.05*mm , -2.70*mm , rot));
356 0 : cel->AddNode(ano,2,new TGeoCombiTrans (0, -2.00*mm , -0.29*mm , rot));
357 0 : cel->AddNode(cat,4,new TGeoCombiTrans (0, -3.15*mm , -2.70*mm , rot));
358 0 : cel->AddNode(pad,1,new TGeoTranslation(0, 0.00*mm , 2.25*mm)); //1 pad
359 :
360 0 : hmp->AddNode(fr1,1,new TGeoTranslation(0.,0.,(80.+1.7)*mm+58.3*mm/2.));
361 0 : fr1->AddNode(fr1up,1,new TGeoTranslation(0.,0.,(58.3*mm-20.00*mm)/2.));
362 :
363 0 : fr1->AddNode(fr1perUpBig,0,new TGeoTranslation(0.,(1385-37-35)*mm/2.,(58.3*mm-20.00*2*mm-10.0*mm)/2.));
364 0 : fr1->AddNode(fr1perUpSma,0,new TGeoTranslation((1426-37-35)*mm/2.,0.,(58.3*mm-20.00*2*mm-10.0*mm)/2.));
365 0 : fr1->AddNode(fr1perUpBig,1,new TGeoTranslation(0.,-(1385-37-35)*mm/2.,(58.3*mm-20.00*2*mm-10.0*mm)/2.));
366 0 : fr1->AddNode(fr1perUpSma,1,new TGeoTranslation(-(1426-37-35)*mm/2.,0.,(58.3*mm-20.00*2*mm-10.0*mm)/2.));
367 :
368 0 : fr1->AddNode(fr1perDowBig,0,new TGeoTranslation(0.,(1385-37-46)*mm/2.,(-58.3*mm+2.3*mm)/2.));
369 0 : fr1->AddNode(fr1perDowSma,0,new TGeoTranslation((1426-37-46)*mm/2.,0.,(-58.3*mm+2.3*mm)/2.));
370 0 : fr1->AddNode(fr1perDowBig,1,new TGeoTranslation(0.,-(1385-37-46)*mm/2.,(-58.3*mm+2.3*mm)/2.));
371 0 : fr1->AddNode(fr1perDowSma,1,new TGeoTranslation(-(1426-37-46)*mm/2.,0.,(-58.3*mm+2.3*mm)/2.));
372 :
373 :
374 0 : fr1->AddNode(ppf,4,new TGeoTranslation(-335*mm,433*mm,(-58.3+38.3)*mm/2.)); fr1->AddNode(ppf,5,new TGeoTranslation(335*mm,433*mm,(-58.3+38.3)*mm/2.));
375 0 : fr1->AddNode(ppf,2,new TGeoTranslation(-335*mm,0.,(-58.3+38.3)*mm/2.)); fr1->AddNode(ppf,3,new TGeoTranslation(335*mm,0.,(-58.3+38.3)*mm/2.));
376 0 : fr1->AddNode(ppf,0,new TGeoTranslation(-335*mm,-433*mm,(-58.3+38.3)*mm/2.)); fr1->AddNode(ppf,1,new TGeoTranslation(335*mm,-433*mm,(-58.3+38.3)*mm/2.));
377 :
378 :
379 :
380 :
381 :
382 :
383 : // ^ Y single cell 5.5mm CH4 = 1*mm CsI + 4.45*mm CsI x cath +0.05*mm safety margin
384 : // | ______________________________
385 : // | | | ^ ||
386 : // | | 1.05mm ||
387 : // 2.2*mm| xxxxxxxxxxxxxxxxxxxxxxxxxxxx |-- 50um x || cat shift x=0mm , y= 3.15mm , z=-2.70mm
388 : // | | ||
389 : // | | ||
390 : // __ | .......................... | 2.1mm 20un . || ano shift x=0mm , y= 2.00mm , z=-0.29mm
391 : // | | ||
392 : // | | ||
393 : // | xxxxxxxxxxxxxxxxxxxxxxxxxxxx |-- x || cat shift x=0mm , y= 1.05mm , z=-2.70mm
394 : // | | ||
395 : // | | 8.4mm ||
396 : // 4*mm | | 2.1mm || pad shift x=0mm , y= 0.00mm , z=2.25*mm
397 : // | | ||
398 : // | | ||
399 : // | xxxxxxxxxxxxxxxxxxxxxxxxxxxx |-- x || cat shift x=0mm , y=-1.05mm , z=-2.70mm
400 : // | | ||
401 : // | | ||
402 : // __ | .......................... | 2.1mm . 2.04mm|| ano shift x=0mm , y=-2.00mm , z=-0.29mm
403 : // | | ||
404 : // | | ||
405 : // | xxxxxxxxxxxxxxxxxxxxxxxxxxxx |-- x 4.45mm || cat shift x=0mm , y=-3.15mm , z=-2.70mm
406 : // 2.2*mm| | ||
407 : // | | 1.05mm ||
408 : // |______________________________| v ||
409 : // < 8 mm >
410 : // ----->X ----->Z
411 0 : ppf->AddNode(lar,0,new TGeoTranslation(-224.5*mm,-151.875*mm, 0.*mm));
412 0 : ppf->AddNode(lar,1,new TGeoTranslation(-224.5*mm,- 50.625*mm, 0.*mm));
413 0 : ppf->AddNode(lar,2,new TGeoTranslation(-224.5*mm,+ 50.625*mm, 0.*mm));
414 0 : ppf->AddNode(lar,3,new TGeoTranslation(-224.5*mm,+151.875*mm, 0.*mm));
415 0 : ppf->AddNode(lar,4,new TGeoTranslation(+224.5*mm,-151.875*mm, 0.*mm));
416 0 : ppf->AddNode(lar,5,new TGeoTranslation(+224.5*mm,- 50.625*mm, 0.*mm));
417 0 : ppf->AddNode(lar,6,new TGeoTranslation(+224.5*mm,+ 50.625*mm, 0.*mm));
418 0 : ppf->AddNode(lar,7,new TGeoTranslation(+224.5*mm,+151.875*mm, 0.*mm));
419 0 : ppf->AddNode(smo,0,new TGeoTranslation(- 65.0*mm,-151.875*mm, 0.*mm));
420 0 : ppf->AddNode(smo,1,new TGeoTranslation(- 65.0*mm,- 50.625*mm, 0.*mm));
421 0 : ppf->AddNode(smo,2,new TGeoTranslation(- 65.0*mm,+ 50.625*mm, 0.*mm));
422 0 : ppf->AddNode(smo,3,new TGeoTranslation(- 65.0*mm,+151.875*mm, 0.*mm));
423 0 : ppf->AddNode(smo,4,new TGeoTranslation(+ 65.0*mm,-151.875*mm, 0.*mm));
424 0 : ppf->AddNode(smo,5,new TGeoTranslation(+ 65.0*mm,- 50.625*mm, 0.*mm));
425 0 : ppf->AddNode(smo,6,new TGeoTranslation(+ 65.0*mm,+ 50.625*mm, 0.*mm));
426 0 : ppf->AddNode(smo,7,new TGeoTranslation(+ 65.0*mm,+151.875*mm, 0.*mm));
427 :
428 0 : hmp->AddNode(fr3,1,new TGeoTranslation(0.,0.,(80.-29.)*mm-34.*mm/2));
429 0 : fr3->AddNode( fr3up,1, new TGeoTranslation(0., 0., 7*mm));
430 0 : fr3->AddNode(fr3down,1,new TGeoTranslation(0., 0., -10*mm));
431 :
432 0 : AliDebug(1,"Stop v2. HMPID option");
433 0 : }//CreateGeometry()
434 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
435 : void AliHMPIDv2::Init()
436 : {
437 : // This method defines ID for sensitive volumes, i.e. such geometry volumes for which there are if(TVirtualMC::GetMC()->CurrentVolID()==XXX)
438 : // statements in StepManager()
439 : // Arguments: none
440 : // Returns: none
441 0 : AliDebug(1,"Start v2 HMPID.");
442 0 : fIdPad = TVirtualMC::GetMC()->VolId("Hpad");
443 0 : fIdCell = TVirtualMC::GetMC()->VolId("Hcel");
444 0 : AliDebug(1,"Stop v2 HMPID.");
445 0 : }
446 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
447 : void AliHMPIDv2::DefineOpticalProperties()
448 : {
449 : // Optical properties definition.
450 : const Int_t kNbins=30; //number of photon energy points
451 : Float_t emin=5.5,emax=8.5; //Photon energy range,[eV]
452 0 : Float_t aEckov [kNbins];
453 0 : Double_t dEckov [kNbins];
454 0 : Float_t aAbsRad[kNbins], aAbsWin[kNbins], aAbsGap[kNbins], aAbsMet[kNbins];
455 0 : Float_t aIdxRad[kNbins], aIdxWin[kNbins], aIdxGap[kNbins], aIdxMet[kNbins], aIdxPc[kNbins];
456 0 : Float_t aQeAll [kNbins], aQePc [kNbins];
457 0 : Double_t dReflMet[kNbins], dQePc[kNbins];
458 :
459 0 : TF2 *pRaIF=new TF2("HidxRad","sqrt(1+0.554*(1239.84/x)^2/((1239.84/x)^2-5769)-0.0005*(y-20))" ,emin,emax,0,50); //DiMauro mail temp 0-50 degrees C
460 0 : TF1 *pWiIF=new TF1("HidxWin","sqrt(1+46.411/(10.666*10.666-x*x)+228.71/(18.125*18.125-x*x))" ,emin,emax); //SiO2 idx TDR p.35
461 0 : TF1 *pGaIF=new TF1("HidxGap","1+0.12489e-6/(2.62e-4 - x*x/1239.84/1239.84)" ,emin,emax); //?????? from where
462 :
463 0 : TF1 *pRaAF=new TF1("HabsRad","(x<7.8)*(gaus+gaus(3))+(x>=7.8)*0.0001" ,emin,emax); //fit from DiMauro data 28.10.03
464 0 : pRaAF->SetParameters(3.20491e16,-0.00917890,0.742402,3035.37,4.81171,0.626309);
465 0 : TF1 *pWiAF=new TF1("HabsWin","(x<8.2)*(818.8638-301.0436*x+36.89642*x*x-1.507555*x*x*x)+(x>=8.2)*0.0001" ,emin,emax); //fit from DiMauro data 28.10.03
466 0 : TF1 *pGaAF=new TF1("HabsGap","(x<7.75)*6512.399+(x>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*x-8.011441e-3*x*x+3.392126e-4*x*x*x)",emin,emax); //????? from where
467 :
468 0 : TF1 *pQeF =new TF1("Hqe" ,"0+(x>6.07267)*0.344811*(1-exp(-1.29730*(x-6.07267)))" ,emin,emax); //fit from DiMauro data 28.10.03
469 :
470 0 : TString title=GetTitle();
471 0 : Bool_t isFlatIdx=title.Contains("FlatIdx");
472 :
473 0 : for(Int_t i=0;i<kNbins;i++){
474 0 : Float_t eV=emin+0.1*i; //Ckov energy in eV
475 0 : aEckov [i] =1e-9*eV; //Ckov energy in GeV
476 0 : dEckov [i] = aEckov[i];
477 0 : aAbsRad[i]=pRaAF->Eval(eV); (isFlatIdx)? aIdxRad[i]=1.292: aIdxRad[i]=pRaIF->Eval(eV,20);
478 0 : aAbsWin[i]=pWiAF->Eval(eV); aIdxWin[i]=pWiIF->Eval(eV);
479 0 : aAbsGap[i]=pGaAF->Eval(eV); aIdxGap[i]=pGaIF->Eval(eV);
480 0 : aQeAll[i] =1; //QE for all other materials except for PC must be 1.
481 0 : aAbsMet[i] =0.0001; aIdxMet[i]=0; //metal ref idx must be 0 in order to reflect photon
482 0 : aIdxPc [i]=1; aQePc [i]=pQeF->Eval(eV); //PC ref idx must be 1 in order to apply photon to QE conversion
483 0 : dQePc [i]=pQeF->Eval(eV);
484 0 : dReflMet[i] = 0.; // no reflection on the surface of the pc (?)
485 : }
486 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kC6F14] , kNbins, aEckov, aAbsRad , aQeAll , aIdxRad );
487 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kSiO2] , kNbins, aEckov, aAbsWin , aQeAll , aIdxWin );
488 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kCH4] , kNbins, aEckov, aAbsGap , aQeAll , aIdxGap );
489 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kCu] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet );
490 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kW] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet ); //n=0 means reflect photons
491 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kCsI] , kNbins, aEckov, aAbsMet , aQePc , aIdxPc ); //n=1 means convert photons
492 0 : TVirtualMC::GetMC()->SetCerenkov((*fIdtmed)[kAl] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet );
493 :
494 : // Define a skin surface for the photocatode to enable 'detection' in G4
495 0 : TVirtualMC::GetMC()->DefineOpSurface("surfPc", kGlisur /*kUnified*/,kDielectric_metal,kPolished, 0.);
496 0 : TVirtualMC::GetMC()->SetMaterialProperty("surfPc", "EFFICIENCY", kNbins, dEckov, dQePc);
497 0 : TVirtualMC::GetMC()->SetMaterialProperty("surfPc", "REFLECTIVITY", kNbins, dEckov, dReflMet);
498 0 : TVirtualMC::GetMC()->SetSkinSurface("skinPc", "Rpc", "surfPc");
499 :
500 0 : delete pRaAF;delete pWiAF;delete pGaAF; delete pRaIF; delete pWiIF; delete pGaIF; delete pQeF;
501 0 : }
502 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
503 : Bool_t AliHMPIDv2::IsLostByFresnel()
504 : {
505 : // Calculate probability for the photon to be lost by Fresnel reflection.
506 0 : TLorentzVector p4;
507 0 : Double_t mom[3],localMom[3];
508 0 : TVirtualMC::GetMC()->TrackMomentum(p4); mom[0]=p4(1); mom[1]=p4(2); mom[2]=p4(3);
509 0 : localMom[0]=0; localMom[1]=0; localMom[2]=0;
510 0 : TVirtualMC::GetMC()->Gmtod(mom,localMom,2);
511 0 : Double_t localTc = localMom[0]*localMom[0]+localMom[2]*localMom[2];
512 0 : Double_t localTheta = TMath::ATan2(TMath::Sqrt(localTc),localMom[1]);
513 0 : Double_t cotheta = TMath::Abs(TMath::Cos(localTheta));
514 0 : if(TVirtualMC::GetMC()->GetRandom()->Rndm() < Fresnel(p4.E()*1e9,cotheta,1)){
515 0 : AliDebug(1,"Photon lost");
516 0 : return kTRUE;
517 : }else
518 0 : return kFALSE;
519 0 : }//IsLostByFresnel()
520 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
521 : void AliHMPIDv2::GenFee(Float_t qtot)
522 : {
523 : // Generate FeedBack photons for the current particle. To be invoked from StepManager().
524 : // eloss=0 means photon so only pulse height distribution is to be analysed.
525 0 : TLorentzVector x4;
526 0 : TVirtualMC::GetMC()->TrackPosition(x4);
527 0 : Int_t iNphotons=TVirtualMC::GetMC()->GetRandom()->Poisson(0.02*qtot); //# of feedback photons is proportional to the charge of hit
528 0 : AliDebug(1,Form("N photons=%i",iNphotons));
529 : Int_t j;
530 0 : Float_t cthf, phif, enfp = 0, sthf, e1[3], e2[3], e3[3], vmod, uswop,dir[3], phi,pol[3], mom[4];
531 : //Generate photons
532 0 : for(Int_t i=0;i<iNphotons;i++){//feedbacks loop
533 0 : Double_t ranf[2];
534 0 : TVirtualMC::GetMC()->GetRandom()->RndmArray(2,ranf); //Sample direction
535 0 : cthf=ranf[0]*2-1.0;
536 0 : if(cthf<0) continue;
537 0 : sthf = TMath::Sqrt((1. - cthf) * (1. + cthf));
538 0 : phif = ranf[1] * 2 * TMath::Pi();
539 :
540 0 : if(Double_t randomNumber=TVirtualMC::GetMC()->GetRandom()->Rndm()<=0.57)
541 0 : enfp = 7.5e-9;
542 0 : else if(randomNumber<=0.7)
543 0 : enfp = 6.4e-9;
544 : else
545 : enfp = 7.9e-9;
546 :
547 :
548 0 : dir[0] = sthf * TMath::Sin(phif); dir[1] = cthf; dir[2] = sthf * TMath::Cos(phif);
549 0 : TVirtualMC::GetMC()->Gdtom(dir, mom, 2);
550 0 : mom[0]*=enfp; mom[1]*=enfp; mom[2]*=enfp;
551 0 : mom[3] = TMath::Sqrt(mom[0]*mom[0]+mom[1]*mom[1]+mom[2]*mom[2]);
552 :
553 : // Polarisation
554 0 : e1[0]= 0; e1[1]=-dir[2]; e1[2]= dir[1];
555 0 : e2[0]=-dir[1]; e2[1]= dir[0]; e2[2]= 0;
556 0 : e3[0]= dir[1]; e3[1]= 0; e3[2]=-dir[0];
557 :
558 : vmod=0;
559 0 : for(j=0;j<3;j++) vmod+=e1[j]*e1[j];
560 0 : if (!vmod) for(j=0;j<3;j++) {
561 0 : uswop=e1[j];
562 0 : e1[j]=e3[j];
563 0 : e3[j]=uswop;
564 : }
565 : vmod=0;
566 0 : for(j=0;j<3;j++) vmod+=e2[j]*e2[j];
567 0 : if (!vmod) for(j=0;j<3;j++) {
568 0 : uswop=e2[j];
569 0 : e2[j]=e3[j];
570 0 : e3[j]=uswop;
571 : }
572 :
573 0 : vmod=0; for(j=0;j<3;j++) vmod+=e1[j]*e1[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e1[j]*=vmod;
574 0 : vmod=0; for(j=0;j<3;j++) vmod+=e2[j]*e2[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e2[j]*=vmod;
575 :
576 0 : phi = TVirtualMC::GetMC()->GetRandom()->Rndm()* 2 * TMath::Pi();
577 0 : for(j=0;j<3;j++) pol[j]=e1[j]*TMath::Sin(phi)+e2[j]*TMath::Cos(phi);
578 0 : TVirtualMC::GetMC()->Gdtom(pol, pol, 2);
579 0 : Int_t outputNtracksStored;
580 0 : gAlice->GetMCApp()->PushTrack(1, //transport
581 0 : gAlice->GetMCApp()->GetCurrentTrackNumber(),//parent track
582 : 50000051, //PID
583 0 : mom[0],mom[1],mom[2],mom[3], //track momentum
584 0 : x4.X(),x4.Y(),x4.Z(),x4.T(), //track origin
585 0 : pol[0],pol[1],pol[2], //polarization
586 : kPFeedBackPhoton, //process ID
587 : outputNtracksStored, //on return how many new photons stored on stack
588 : 1.0); //weight
589 0 : }//feedbacks loop
590 0 : AliDebug(1,"Stop.");
591 0 : }//GenerateFeedbacks()
592 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
593 : void AliHMPIDv2::Hits2SDigits()
594 : {
595 : // Interface method ivoked from AliSimulation to create a list of sdigits corresponding to list of hits. Every hit generates one or more sdigits.
596 : // Arguments: none
597 : // Returns: none
598 0 : AliDebug(1,"Start.");
599 0 : for(Int_t iEvt=0;iEvt < GetLoader()->GetRunLoader()->GetNumberOfEvents();iEvt++){ //events loop
600 0 : GetLoader()->GetRunLoader()->GetEvent(iEvt); //get next event
601 :
602 0 : if(!GetLoader()->TreeH()) {GetLoader()->LoadHits(); }
603 0 : if(!GetLoader()->TreeS()) {GetLoader()->MakeTree("S"); MakeBranch("S");}//to
604 :
605 0 : for(Int_t iEnt=0;iEnt<GetLoader()->TreeH()->GetEntries();iEnt++){//prims loop
606 0 : GetLoader()->TreeH()->GetEntry(iEnt);
607 0 : Hit2Sdi(Hits(),SdiLst());
608 : }//prims loop
609 0 : GetLoader()->TreeS()->Fill();
610 0 : GetLoader()->WriteSDigits("OVERWRITE");
611 0 : SdiReset();
612 : }//events loop
613 0 : GetLoader()->UnloadHits();
614 0 : GetLoader()->UnloadSDigits();
615 0 : AliDebug(1,"Stop.");
616 0 : }//Hits2SDigits()
617 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
618 : void AliHMPIDv2::Hit2Sdi(TClonesArray *pHitLst,TClonesArray *pSdiLst)
619 : {
620 : // Converts list of hits to list of sdigits.
621 : // Arguments: pHitLst - list of hits provided not empty
622 : // pSDigLst - list of sdigits where to store the results
623 : // Returns: none
624 0 : for(Int_t iHit=0;iHit<pHitLst->GetEntries();iHit++){ //hits loop
625 0 : AliHMPIDHit *pHit=(AliHMPIDHit*)pHitLst->At(iHit); //get pointer to current hit
626 0 : pHit->Hit2Sdi(pSdiLst); //convert this hit to list of sdigits
627 : }//hits loop loop
628 0 : }//Hits2Sdi()
629 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
630 : void AliHMPIDv2::Digits2Raw()
631 : {
632 : // Interface method invoked by AliSimulation to create raw data streams from digits. Events loop is done in AliSimulation
633 : // Arguments: none
634 : // Returns: none
635 0 : AliDebug(1,"Start.");
636 0 : GetLoader()->LoadDigits();
637 0 : TTree * treeD = GetLoader()->TreeD();
638 0 : if(!treeD) {
639 0 : AliError("No digits tree!");
640 0 : return;
641 : }
642 0 : treeD->GetEntry(0);
643 :
644 :
645 : AliHMPIDRawStream *pRS=0x0;
646 0 : pRS->WriteRaw(DigLst());
647 :
648 0 : GetLoader()->UnloadDigits();
649 0 : AliDebug(1,"Stop.");
650 0 : }//Digits2Raw()
651 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
652 : Float_t AliHMPIDv2::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola)
653 : {
654 : // Correction for Fresnel ???????????
655 : // Arguments: ene - photon energy [GeV],
656 : // PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.)
657 : // Returns:
658 0 : Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,
659 : 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,
660 : 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5};
661 0 : Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05,
662 : 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11,
663 : 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95,
664 : 1.72,1.53};
665 0 : Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543,
666 : 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878,
667 : 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824,
668 : 1.714,1.498};
669 : Float_t xe=ene;
670 0 : Int_t j=Int_t(xe*10)-49;
671 0 : Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]);
672 0 : Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]);
673 :
674 : //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR
675 : //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197
676 :
677 0 : Float_t sinin=TMath::Sqrt((1.-pdoti)*(1.+pdoti));
678 0 : Float_t tanin=sinin/pdoti;
679 :
680 0 : Float_t c1=cn*cn-ck*ck-sinin*sinin;
681 0 : Float_t c2=4*cn*cn*ck*ck;
682 0 : Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1));
683 0 : Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1);
684 :
685 0 : Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2);
686 0 : Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2);
687 :
688 :
689 : //CORRECTION FACTOR FOR SURFACE ROUGHNESS
690 : //B.J. STAGG APPLIED OPTICS, 30(1991),4113
691 :
692 : Float_t sigraf=18.;
693 0 : Float_t lamb=1240/ene;
694 : Float_t fresn;
695 :
696 0 : Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb));
697 :
698 0 : if(pola)
699 : {
700 : Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S
701 0 : fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr));
702 0 : }
703 : else
704 0 : fresn=0.5*(rp+rs);
705 :
706 0 : fresn = fresn*rO;
707 0 : return fresn;
708 0 : }//Fresnel()
709 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
710 : void AliHMPIDv2::Print(Option_t *option)const
711 : {
712 : // Debug printout
713 0 : TObject::Print(option);
714 0 : }//void AliHMPID::Print(Option_t *option)const
715 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
716 : Bool_t AliHMPIDv2::Raw2SDigits(AliRawReader *pRR)
717 : {
718 : // Interface methode ivoked from AliSimulation to create a list of sdigits from raw digits. Events loop is done in AliSimulation
719 : // Arguments: pRR- raw reader
720 : // Returns: kTRUE on success (currently ignored in AliSimulation::ConvertRaw2SDigits())
721 : //AliHMPIDDigit sdi; //tmp sdigit, raw digit will be converted to it
722 :
723 0 : if(!GetLoader()->TreeS()) {MakeTree("S"); MakeBranch("S");}
724 :
725 0 : TClonesArray *pSdiLst=SdiLst(); Int_t iSdiCnt=0; //tmp list of sdigits for all chambers
726 0 : AliHMPIDRawStream stream(pRR);
727 0 : while(stream.Next())
728 : {
729 0 : for(Int_t iPad=0;iPad<stream.GetNPads();iPad++) {
730 0 : AliHMPIDDigit sdi(stream.GetPadArray()[iPad],stream.GetChargeArray()[iPad]);
731 0 : new((*pSdiLst)[iSdiCnt++]) AliHMPIDDigit(sdi); //add this digit to the tmp list
732 0 : }
733 : }
734 :
735 0 : GetLoader()->TreeS()->Fill(); GetLoader()->WriteSDigits("OVERWRITE");//write out sdigits
736 0 : SdiReset();
737 : return kTRUE;
738 0 : }//Raw2SDigits
739 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
740 : void AliHMPIDv2::StepCount()
741 : {
742 : // Count number of ckovs created
743 0 : }
744 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
745 : void AliHMPIDv2::StepHistory()
746 : {
747 : // This methode is invoked from StepManager() in order to print out
748 : static Int_t iStepN;
749 : const char *sParticle;
750 0 : switch(TVirtualMC::GetMC()->TrackPid()){
751 0 : case kProton: sParticle="PROTON" ;break;
752 0 : case kNeutron: sParticle="neutron" ;break;
753 0 : case kGamma: sParticle="gamma" ;break;
754 0 : case 50000050: sParticle="CKOV" ;break;
755 0 : case kPi0: sParticle="Pi0" ;break;
756 0 : case kPiPlus: sParticle="Pi+" ;break;
757 0 : case kPiMinus: sParticle="Pi-" ;break;
758 0 : case kElectron: sParticle="electron" ;break;
759 0 : default: sParticle="not known" ;break;
760 : }
761 :
762 0 : TString flag="fanny combination";
763 0 : if(TVirtualMC::GetMC()->IsTrackAlive()) {
764 0 : if(TVirtualMC::GetMC()->IsTrackEntering()) flag="enters to";
765 0 : else if(TVirtualMC::GetMC()->IsTrackExiting()) flag="exits from";
766 0 : else if(TVirtualMC::GetMC()->IsTrackInside()) flag="inside";
767 : } else {
768 0 : if(TVirtualMC::GetMC()->IsTrackStop()) flag="stopped in";
769 : }
770 :
771 0 : Int_t vid=0,copy=0;
772 0 : TString path=TVirtualMC::GetMC()->CurrentVolName(); path.Prepend("-");path.Prepend(TVirtualMC::GetMC()->CurrentVolOffName(1));//current volume and his mother are always there
773 0 : vid=TVirtualMC::GetMC()->CurrentVolOffID(2,copy); if(vid) {path.Prepend("-");path.Prepend(TVirtualMC::GetMC()->VolName(vid));}
774 0 : vid=TVirtualMC::GetMC()->CurrentVolOffID(3,copy); if(vid) {path.Prepend("-");path.Prepend(TVirtualMC::GetMC()->VolName(vid));}
775 :
776 :
777 0 : Printf("Step %i: %s (%i) %s %s m=%.6f GeV q=%.1f dEdX=%.4f Etot=%.4f",iStepN,sParticle,TVirtualMC::GetMC()->TrackPid(),flag.Data(),path.Data(),TVirtualMC::GetMC()->TrackMass(),TVirtualMC::GetMC()->TrackCharge(),TVirtualMC::GetMC()->Edep()*1e9,TVirtualMC::GetMC()->Etot());
778 :
779 0 : Double_t gMcTrackPos[3]; TVirtualMC::GetMC()->TrackPosition(gMcTrackPos[0],gMcTrackPos[1],gMcTrackPos[2]);
780 0 : Double_t gMcTrackPosLoc[3]; TVirtualMC::GetMC()->Gmtod(gMcTrackPos,gMcTrackPosLoc,1);
781 0 : Printf("TVirtualMC::GetMC() Track Position (MARS) x: %5.3lf, y: %5.3lf, z: %5.3lf (r: %5.3lf) ---> (LOC) x: %5.3f, y: %5.3f, z: %5.3f",gMcTrackPos[0],gMcTrackPos[1],gMcTrackPos[2],TMath::Sqrt(gMcTrackPos[0]*gMcTrackPos[0]+gMcTrackPos[1]*gMcTrackPos[1]+gMcTrackPos[2]*gMcTrackPos[2]),gMcTrackPosLoc[0],gMcTrackPosLoc[1],gMcTrackPosLoc[2]);
782 :
783 :
784 :
785 0 : Printf("Step %i: tid=%i flags alive=%i disap=%i enter=%i exit=%i inside=%i out=%i stop=%i new=%i",
786 0 : iStepN, gAlice->GetMCApp()->GetCurrentTrackNumber(),
787 0 : TVirtualMC::GetMC()->IsTrackAlive(), TVirtualMC::GetMC()->IsTrackDisappeared(),TVirtualMC::GetMC()->IsTrackEntering(), TVirtualMC::GetMC()->IsTrackExiting(),
788 0 : TVirtualMC::GetMC()->IsTrackInside(),TVirtualMC::GetMC()->IsTrackOut(), TVirtualMC::GetMC()->IsTrackStop(), TVirtualMC::GetMC()->IsNewTrack());
789 :
790 0 : Float_t a,z,den,rad,abs; a=z=den=rad=abs=-1;
791 0 : Int_t mid=TVirtualMC::GetMC()->CurrentMaterial(a,z,den,rad,abs);
792 0 : Printf("Step %i: mid=%i a=%7.2f z=%7.2f den=%9.4f rad=%9.2f abs=%9.2f\n\n",iStepN,mid,a,z,den,rad,abs);
793 :
794 0 : TArrayI proc; TVirtualMC::GetMC()->StepProcesses(proc);
795 0 : Printf("Processes in this step:");
796 0 : for ( int i = 0 ; i < proc.GetSize(); i++)
797 : {
798 0 : Printf("%s",TMCProcessName[proc.At(i)]);
799 : }
800 0 : Printf("End process list");
801 :
802 0 : iStepN++;
803 0 : }//StepHistory()
804 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
805 : void AliHMPIDv2::StepManager()
806 : {
807 : // Full Step Manager.
808 : // Arguments: none
809 : // Returns: none
810 : // StepHistory(); return; //uncomment to print tracks history
811 : // StepCount(); return; //uncomment to count photons
812 :
813 0 : Int_t copy; //volume copy aka node
814 :
815 : //Treat photons
816 0 : if((TVirtualMC::GetMC()->TrackPid()==50000050||TVirtualMC::GetMC()->TrackPid()==50000051)&&TVirtualMC::GetMC()->CurrentVolID(copy)==fIdPad){ //photon (Ckov or feedback) hit PC (fIdPad)
817 0 : if(TVirtualMC::GetMC()->Edep()>0){ //photon survided QE test i.e. produces electron
818 0 : if(IsLostByFresnel()){ TVirtualMC::GetMC()->StopTrack(); return;} //photon lost due to fersnel reflection on PC
819 0 : TVirtualMC::GetMC()->CurrentVolOffID(5,copy); //current chamber since geomtry tree is Hmp-Hsec-Hgap-Hrow-Hcel-Hpad
820 0 : Int_t tid= TVirtualMC::GetMC()->GetStack()->GetCurrentTrackNumber(); //take TID
821 0 : Int_t pid= TVirtualMC::GetMC()->TrackPid(); //take PID
822 0 : Float_t etot= TVirtualMC::GetMC()->Etot(); //total hpoton energy, [GeV]
823 0 : Double_t x[3]; TVirtualMC::GetMC()->TrackPosition(x[0],x[1],x[2]); //take MARS position at entrance to PC
824 0 : Float_t hitTime= (Float_t)TVirtualMC::GetMC()->TrackTime(); //hit formation time
825 0 : Float_t xl,yl; AliHMPIDParam::Instance()->Mars2Lors(copy,x,xl,yl); //take LORS position
826 0 : new((*fHits)[fNhits++])AliHMPIDHit(copy,etot,pid,tid,xl,yl,hitTime,x); //HIT for photon, position at P, etot will be set to Q
827 0 : if(fDoFeed) GenFee(etot); //generate feedback photons etot is modified in hit ctor to Q of hit
828 0 : }//photon hit PC and DE >0
829 : }//photon hit PC
830 :
831 : //Treat charged particles
832 : static Float_t eloss; //need to store mip parameters between different steps
833 : static Double_t in[3];
834 0 : if(TVirtualMC::GetMC()->IsTrackEntering() && TVirtualMC::GetMC()->TrackCharge() && TVirtualMC::GetMC()->CurrentVolID(copy)==fIdPad) //Trackref stored when entering in the pad volume
835 0 : AddTrackReference(TVirtualMC::GetMC()->GetStack()->GetCurrentTrackNumber(), AliTrackReference::kHMPID); //for acceptance calculations
836 0 : if(TVirtualMC::GetMC()->TrackCharge() && TVirtualMC::GetMC()->CurrentVolID(copy)==fIdCell){ //charged particle in amplification gap (fIdCell)
837 0 : if(TVirtualMC::GetMC()->IsTrackEntering()||TVirtualMC::GetMC()->IsNewTrack()) { //entering or newly created
838 0 : eloss=0; //reset Eloss collector
839 0 : TVirtualMC::GetMC()->TrackPosition(in[0],in[1],in[2]); //take position at the entrance
840 0 : }else if(TVirtualMC::GetMC()->IsTrackExiting()||TVirtualMC::GetMC()->IsTrackStop()||TVirtualMC::GetMC()->IsTrackDisappeared()){ //exiting or disappeared
841 0 : eloss +=TVirtualMC::GetMC()->Edep(); //take into account last step Eloss
842 0 : TVirtualMC::GetMC()->CurrentVolOffID(4,copy); //take current chamber since geometry tree is Hmp-Hsec-Hgap-Hrow-Hcel
843 0 : Int_t tid= TVirtualMC::GetMC()->GetStack()->GetCurrentTrackNumber(); //take TID
844 0 : Int_t pid= TVirtualMC::GetMC()->TrackPid(); //take PID
845 0 : Double_t out[3]; TVirtualMC::GetMC()->TrackPosition(out[0],out[1],out[2]); //take MARS position at exit
846 0 : Float_t hitTime= (Float_t)TVirtualMC::GetMC()->TrackTime(); //hit formation time
847 0 : out[0]=0.5*(out[0]+in[0]); //>
848 0 : out[1]=0.5*(out[1]+in[1]); //take hit position at the anod plane
849 0 : out[2]=0.5*(out[2]+in[2]); //>
850 0 : Float_t xl,yl;AliHMPIDParam::Instance()->Mars2Lors(copy,out,xl,yl); //take LORS position
851 0 : new((*fHits)[fNhits++])AliHMPIDHit(copy,eloss,pid,tid,xl,yl,hitTime,out); //HIT for MIP, position near anod plane, eloss will be set to Q
852 0 : if(fDoFeed) GenFee(eloss); //generate feedback photons
853 0 : }else //just going inside
854 0 : eloss += TVirtualMC::GetMC()->Edep(); //collect this step eloss
855 : }//MIP in GAP
856 0 : }//StepManager()
857 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
858 : void AliHMPIDv2::TestPoint(Int_t ch,Float_t x,Float_t y)
859 : {
860 : // Utility method to check the validity of geometry by poviding some crucial points
861 : // Arguments: ch,x,y- crucial point definition (cm) in LORS
862 : // Returns: none
863 0 : Double_t mars[3];
864 0 : AliHMPIDParam::Instance()->Lors2Mars(ch,x,y,mars);
865 0 : Printf("(ch=%i,locX=%.2f,locY=%.2f) %s",ch,x,y,gGeoManager->FindNode(mars[0],mars[1],mars[2])->GetName());
866 0 : }//TestPoint()
867 : //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
868 : void AliHMPIDv2::TestGeom()
869 : {
870 : //
871 : // Test method to check geometry
872 : //
873 : //TGeoManager::Import("misaligned_geometry.root");
874 0 : TGeoManager::Import("geometry.root");
875 0 : for(Int_t ch=AliHMPIDParam::kMinCh;ch<=AliHMPIDParam::kMaxCh;ch++)
876 0 : TestPoint(ch,0,0);
877 0 : }//TestPoint()
878 : //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
879 :
880 : void AliHMPIDv2::IdealPosition(Int_t iCh,TGeoHMatrix *pMatrix) //ideal position of given chamber
881 : {
882 : // Construct ideal position matrix for a given chamber
883 : // Arguments: iCh- chamber ID; pMatrix- pointer to precreated unity matrix where to store the results
884 : // Returns: none
885 : const Double_t kAngHor=19.5; // horizontal angle between chambers 19.5 grad
886 : const Double_t kAngVer=20; // vertical angle between chambers 20 grad
887 : const Double_t kAngCom=30; // common HMPID rotation with respect to x axis 30 grad
888 : const Double_t kTrans[3]={490,0,0}; // center of the chamber is on window-gap surface
889 0 : pMatrix->RotateY(90); // rotate around y since initial position is in XY plane -> now in YZ plane
890 0 : pMatrix->SetTranslation(kTrans); // now plane in YZ is shifted along x
891 0 : switch(iCh){
892 0 : case 0: pMatrix->RotateY(kAngHor); pMatrix->RotateZ(-kAngVer); break; //right and down
893 0 : case 1: pMatrix->RotateZ(-kAngVer); break; //down
894 0 : case 2: pMatrix->RotateY(kAngHor); break; //right
895 : case 3: break; //no rotation
896 0 : case 4: pMatrix->RotateY(-kAngHor); break; //left
897 0 : case 5: pMatrix->RotateZ(kAngVer); break; //up
898 0 : case 6: pMatrix->RotateY(-kAngHor); pMatrix->RotateZ(kAngVer); break; //left and up
899 : }
900 0 : pMatrix->RotateZ(kAngCom); //apply common rotation in XY plane
901 0 : }
|