Line data Source code
1 : #ifndef ALIITSRECOPARAM_H
2 : #define ALIITSRECOPARAM_H
3 : /* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
4 : * See cxx source for full Copyright notice */
5 :
6 : /* $Id$ */
7 :
8 : ///////////////////////////////////////////////////////////////////////////////
9 : // //
10 : // Class with ITS reconstruction parameters //
11 : // Origin: andrea.dainese@lnl.infn.it //
12 : // //
13 : ///////////////////////////////////////////////////////////////////////////////
14 :
15 :
16 : #include "AliDetectorRecoParam.h"
17 : #include "AliITSgeomTGeo.h"
18 : //#include "AliESDV0Params.h"
19 :
20 : class AliESDV0Params;
21 :
22 : class AliITSRecoParam : public AliDetectorRecoParam
23 : {
24 : public:
25 : AliITSRecoParam();
26 : virtual ~AliITSRecoParam();
27 :
28 : static AliITSRecoParam *GetLowFluxParam();// make reco parameters for low flux env.
29 : static AliITSRecoParam *GetHighFluxParam();// make reco parameters for high flux env.
30 : static AliITSRecoParam *GetCosmicTestParam();// special setting for cosmic
31 : static AliITSRecoParam *GetPlaneEffParam(Int_t i);// special setting for Plane Efficiency studies
32 :
33 0 : static Int_t GetLayersNotToSkip(Int_t i) { return fgkLayersNotToSkip[i]; }
34 8 : static Int_t GetLastLayerToTrackTo() { return fgkLastLayerToTrackTo; }
35 1332 : static Int_t GetMaxClusterPerLayer() { return kMaxClusterPerLayer; }
36 2464 : static Int_t GetMaxClusterPerLayer5() { return kMaxClusterPerLayer5; }
37 2000 : static Int_t GetMaxClusterPerLayer10() { return kMaxClusterPerLayer10; }
38 1716 : static Int_t GetMaxClusterPerLayer20() { return kMaxClusterPerLayer20; }
39 0 : static Int_t GetMaxDetectorPerLayer() { return fgkMaxDetectorPerLayer; }
40 1368 : static Double_t Getriw() { return fgkriw; }
41 0 : static Double_t Getdiw() { return fgkdiw; }
42 0 : static Double_t GetX0iw() { return fgkX0iw; }
43 680 : static Double_t Getrcd() { return fgkrcd; }
44 0 : static Double_t Getdcd() { return fgkdcd; }
45 0 : static Double_t GetX0cd() { return fgkX0cd; }
46 0 : static Double_t Getyr() { return fgkyr; }
47 0 : static Double_t Getdr() { return fgkdr; }
48 0 : static Double_t Getzm() { return fgkzm; }
49 0 : static Double_t Getdm() { return fgkdm; }
50 876 : static Double_t Getrs() { return fgkrs; }
51 0 : static Double_t Getds() { return fgkds; }
52 232 : static Double_t GetrInsideITSscreen() { return fgkrInsideITSscreen; }
53 232 : static Double_t GetrInsideSPD1() { return fgkrInsideSPD1; }
54 10920 : static Double_t GetrPipe() { return fgkrPipe; }
55 1324 : static Double_t GetrInsidePipe() { return fgkrInsidePipe; }
56 0 : static Double_t GetrOutsidePipe() { return fgkrOutsidePipe; }
57 0 : static Double_t GetdPipe() { return fgkdPipe; }
58 14252 : static Double_t GetrInsideShield(Int_t i) { return fgkrInsideShield[i]; }
59 3944 : static Double_t GetrOutsideShield(Int_t i) { return fgkrOutsideShield[i]; }
60 140 : static Double_t Getdshield(Int_t i) { return fgkdshield[i]; }
61 140 : static Double_t GetX0shield(Int_t i) { return fgkX0shield[i]; }
62 424 : static Double_t GetX0Air() { return fgkX0Air; }
63 0 : static Double_t GetX0Be() { return fgkX0Be; }
64 9700 : static Double_t GetBoundaryWidth() { return fgkBoundaryWidth; }
65 9700 : static Double_t GetDeltaXNeighbDets() { return fgkDeltaXNeighbDets; }
66 35328 : static Double_t GetSPDdetzlength() { return fgkSPDdetzlength; }
67 0 : static Double_t GetSPDdetxlength() { return fgkSPDdetxlength; }
68 :
69 : void PrintParameters() const;
70 :
71 0 : void SetTracker(Int_t tracker=0) { fTracker=tracker; }
72 0 : void SetTrackerDefault() { SetTracker(0); } // = MI and SA
73 0 : void SetTrackerMI() { SetTracker(1); }
74 0 : void SetTrackerV2() { SetTracker(2); }
75 4 : Int_t GetTracker() const { return fTracker; }
76 0 : void SetTrackerSAOnly(Bool_t flag=kTRUE) { fITSonly=flag; }
77 4 : Bool_t GetTrackerSAOnly() const { return fITSonly; }
78 0 : void SetVertexer(Int_t vertexer=0) { fVertexer=vertexer; }
79 0 : void SetVertexer3D() { SetVertexer(0); }
80 0 : void SetVertexerZ() { SetVertexer(1); }
81 0 : void SetVertexerCosmics() { SetVertexer(2); }
82 0 : void SetVertexerIons() { SetVertexer(3); }
83 : void SetVertexerSmearMC(Float_t smearx=0.005, Float_t smeary=0.005, Float_t smearz=0.01) {
84 0 : fVertexerFastSmearX=smearx; fVertexerFastSmearY=smeary; fVertexerFastSmearZ=smearz; SetVertexer(4);
85 0 : }
86 0 : void SetVertexerFixedOnTDI() {SetVertexer(5);} // for injection tests
87 0 : void SetVertexerFixedOnTED() {SetVertexer(6);} // for injection tests
88 16 : Int_t GetVertexer() const { return fVertexer; }
89 0 : Float_t GetVertexerFastSmearX() const {return fVertexerFastSmearX;}
90 0 : Float_t GetVertexerFastSmearY() const {return fVertexerFastSmearY;}
91 0 : Float_t GetVertexerFastSmearZ() const {return fVertexerFastSmearZ;}
92 :
93 0 : void SetPID(Int_t pid=0) {fPID=pid;}
94 0 : void SetDefaultPID() {SetPID(0);}
95 0 : void SetLandauFitPID() {SetPID(1);}
96 16 : Int_t GetPID() const {return fPID;}
97 :
98 : void SetVertexer3DFiducialRegions(Float_t dzwid=40.0, Float_t drwid=2.5, Float_t dznar=0.5, Float_t drnar=0.5){
99 12 : SetVertexer3DWideFiducialRegion(dzwid,drwid);
100 6 : SetVertexer3DNarrowFiducialRegion(dznar,drnar);
101 6 : }
102 : void SetVertexer3DWideFiducialRegion(Float_t dz=40.0, Float_t dr=2.5){
103 12 : fVtxr3DZCutWide=dz; fVtxr3DRCutWide=dr;
104 6 : }
105 : void SetVertexer3DNarrowFiducialRegion(Float_t dz=0.5, Float_t dr=0.5){
106 12 : fVtxr3DZCutNarrow=dz; fVtxr3DRCutNarrow=dr;
107 6 : }
108 : void SetVertexer3DDeltaPhiCuts(Float_t dphiloose=0.5, Float_t dphitight=0.025){
109 12 : fVtxr3DPhiCutLoose=dphiloose;
110 6 : fVtxr3DPhiCutTight=dphitight;
111 6 : }
112 : void SetVertexer3DDCACut(Float_t dca=0.1){
113 12 : fVtxr3DDCACut=dca;
114 6 : }
115 : void SetVertexer3DDefaults(){
116 12 : SetVertexer3DFiducialRegions();
117 6 : SetVertexer3DDeltaPhiCuts();
118 6 : SetVertexer3DDCACut();
119 6 : }
120 0 : void SetSPDVertexerPileupAlgoOff(){fVtxr3DPileupAlgo=3;}
121 0 : void SetSPDVertexerPileupAlgoZ(){fVtxr3DPileupAlgo=0;}
122 0 : void SetSPDVertexerPileupAlgo3DTwoSteps(){fVtxr3DPileupAlgo=1;}
123 0 : void SetSPDVertexerPileupAlgo3DOneShot(){fVtxr3DPileupAlgo=2;}
124 0 : void SetSPDVertexerHighMultAlgoDownscale(){fVtxr3DHighMultAlgo=0;}
125 0 : void SetSPDVertexerHighMultAlgoTraces(){fVtxr3DHighMultAlgo=1;}
126 : //
127 0 : Bool_t GetSelectBestMIP03() const {return fSelectBestMIP03;}
128 20 : Bool_t GetFlagFakes() const {return fFlagFakes;}
129 20 : Bool_t GetUseImproveKalman() const {return fUseImproveKalman;}
130 0 : void SetSelectBestMIP03(Bool_t v=kTRUE) {fSelectBestMIP03 = v;}
131 0 : void SetFlagFakes(Bool_t v=kTRUE) {fFlagFakes = v;}
132 0 : void SetUseImproveKalman(Bool_t v=kTRUE) {fUseImproveKalman = v;}
133 : //
134 32 : Float_t GetVertexer3DWideFiducialRegionZ() const {return fVtxr3DZCutWide;}
135 16 : Float_t GetVertexer3DWideFiducialRegionR() const {return fVtxr3DRCutWide;}
136 16 : Float_t GetVertexer3DNarrowFiducialRegionZ() const {return fVtxr3DZCutNarrow;}
137 16 : Float_t GetVertexer3DNarrowFiducialRegionR() const {return fVtxr3DRCutNarrow;}
138 16 : Float_t GetVertexer3DLooseDeltaPhiCut() const {return fVtxr3DPhiCutLoose;}
139 16 : Float_t GetVertexer3DTightDeltaPhiCut() const {return fVtxr3DPhiCutTight;}
140 16 : Float_t GetVertexer3DDCACut() const {return fVtxr3DDCACut;}
141 16 : Int_t GetSPDVertexerPileupAlgo() const {return fVtxr3DPileupAlgo;}
142 16 : UChar_t GetSPDVertexerHighMultAlgo() const {return fVtxr3DHighMultAlgo;}
143 :
144 15152 : Double_t GetSigmaY2(Int_t i) const { return fSigmaY2[i]; }
145 15152 : Double_t GetSigmaZ2(Int_t i) const { return fSigmaZ2[i]; }
146 :
147 9700 : Double_t GetMaxSnp() const { return fMaxSnp; }
148 :
149 30304 : Double_t GetNSigmaYLayerForRoadY() const { return fNSigmaYLayerForRoadY; }
150 9700 : Double_t GetNSigmaRoadY() const { return fNSigmaRoadY; }
151 30304 : Double_t GetNSigmaZLayerForRoadZ() const { return fNSigmaZLayerForRoadZ; }
152 9700 : Double_t GetNSigmaRoadZ() const { return fNSigmaRoadZ; }
153 4000 : Double_t GetNSigma2RoadYC() const { return fNSigma2RoadYC; }
154 4000 : Double_t GetNSigma2RoadZC() const { return fNSigma2RoadZC; }
155 1452 : Double_t GetNSigma2RoadYNonC() const { return fNSigma2RoadYNonC; }
156 1452 : Double_t GetNSigma2RoadZNonC() const { return fNSigma2RoadZNonC; }
157 38800 : Double_t GetRoadMisal() const { return fRoadMisal; }
158 0 : void SetRoadMisal(Double_t road=0) { fRoadMisal=road; }
159 :
160 0 : Double_t GetChi2PerCluster() const { return fChi2PerCluster; }
161 21676 : Double_t GetMaxChi2PerCluster(Int_t i) const { return fMaxChi2PerCluster[i]; }
162 1228 : Double_t GetMaxNormChi2NonC(Int_t i) const { return fMaxNormChi2NonC[i]; }
163 4760 : Double_t GetMaxNormChi2C(Int_t i) const { return fMaxNormChi2C[i]; }
164 608 : Double_t GetMaxNormChi2NonCForHypothesis() const { return fMaxNormChi2NonCForHypothesis; }
165 28680 : Double_t GetMaxChi2() const { return fMaxChi2; }
166 4956 : Double_t GetMaxChi2s(Int_t i) const { return fMaxChi2s[i]; }
167 0 : Double_t GetMaxChi2sR(Int_t i) const { return fMaxChi2sR[i]; }
168 0 : Double_t GetMaxChi2In() const { return fMaxChi2In; }
169 0 : Double_t GetMaxRoad() const { return fMaxRoad; }
170 6744 : Double_t GetMaxNormChi2ForGolden(Int_t i) const { return 3.+0.5*i; }
171 :
172 0 : void SetSearchForExtraClusters(Bool_t opt=kTRUE){ fSearchForExtras=opt; }
173 16 : Double_t GetSearchForExtraClusters() const { return fSearchForExtras; }
174 :
175 4 : Double_t GetXVdef() const { return fXV; }
176 4 : Double_t GetYVdef() const { return fYV; }
177 4 : Double_t GetZVdef() const { return fZV; }
178 4 : Double_t GetSigmaXVdef() const { return fSigmaXV; }
179 4 : Double_t GetSigmaYVdef() const { return fSigmaYV; }
180 4 : Double_t GetSigmaZVdef() const { return fSigmaZV; }
181 :
182 0 : Double_t GetVertexCut() const { return fVertexCut; }
183 6696 : Double_t GetMaxDZforPrimTrk() const { return fMaxDZforPrimTrk; }
184 412 : Double_t GetMaxDZToUseConstraint() const { return fMaxDZToUseConstraint; }
185 0 : Double_t GetMaxDforV0dghtrForProlongation() const { return fMaxDforV0dghtrForProlongation; }
186 264 : Double_t GetMaxDForProlongation() const { return fMaxDForProlongation; }
187 252 : Double_t GetMaxDZForProlongation() const { return fMaxDZForProlongation; }
188 16 : Double_t GetMinPtForProlongation() const { return fMinPtForProlongation; }
189 :
190 6 : void SetAddVirtualClustersInDeadZone(Bool_t add=kTRUE) { fAddVirtualClustersInDeadZone=add; return; }
191 8656 : Bool_t GetAddVirtualClustersInDeadZone() const { return fAddVirtualClustersInDeadZone; }
192 0 : Double_t GetZWindowDeadZone() const { return fZWindowDeadZone; }
193 0 : Double_t GetSigmaXDeadZoneHit2() const { return fSigmaXDeadZoneHit2; }
194 0 : Double_t GetSigmaZDeadZoneHit2() const { return fSigmaZDeadZoneHit2; }
195 0 : Double_t GetXPassDeadZoneHits() const { return fXPassDeadZoneHits; }
196 :
197 96 : Bool_t GetSkipSubdetsNotInTriggerCluster() const { return fSkipSubdetsNotInTriggerCluster; }
198 0 : void SetSkipSubdetsNotInTriggerCluster(Bool_t flag=kTRUE) { fSkipSubdetsNotInTriggerCluster=flag; }
199 :
200 12 : void SetUseTGeoInTracker(Int_t use=1) { fUseTGeoInTracker=use; return; }
201 4 : Int_t GetUseTGeoInTracker() const { return fUseTGeoInTracker; }
202 12 : void SetStepSizeTGeo(Double_t size=0.1) { fStepSizeTGeo=size; return; }
203 4262 : Double_t GetStepSizeTGeo() const { return fStepSizeTGeo; }
204 :
205 6 : void SetAllowSharedClusters(Bool_t allow=kTRUE) { fAllowSharedClusters=allow; return; }
206 12 : Bool_t GetAllowSharedClusters() const { return fAllowSharedClusters; }
207 :
208 12 : void SetClusterErrorsParam(Int_t param=1) { fClusterErrorsParam=param; return; }
209 23936 : Int_t GetClusterErrorsParam() const { return fClusterErrorsParam; }
210 12 : void SetClusterMisalErrorY(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorY[0]=e0; fClusterMisalErrorY[1]=e1; fClusterMisalErrorY[2]=e2; fClusterMisalErrorY[3]=e3; fClusterMisalErrorY[4]=e4; fClusterMisalErrorY[5]=e5; return; }
211 12 : void SetClusterMisalErrorZ(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZ[0]=e0; fClusterMisalErrorZ[1]=e1; fClusterMisalErrorZ[2]=e2; fClusterMisalErrorZ[3]=e3; fClusterMisalErrorZ[4]=e4; fClusterMisalErrorZ[5]=e5; return; }
212 12 : void SetClusterMisalError(Float_t err=0.) { SetClusterMisalErrorY(err,err,err,err,err,err); SetClusterMisalErrorZ(err,err,err,err,err,err); }
213 12 : void SetClusterMisalErrorYBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorYBOn[0]=e0; fClusterMisalErrorYBOn[1]=e1; fClusterMisalErrorYBOn[2]=e2; fClusterMisalErrorYBOn[3]=e3; fClusterMisalErrorYBOn[4]=e4; fClusterMisalErrorYBOn[5]=e5; return; }
214 12 : void SetClusterMisalErrorZBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZBOn[0]=e0; fClusterMisalErrorZBOn[1]=e1; fClusterMisalErrorZBOn[2]=e2; fClusterMisalErrorZBOn[3]=e3; fClusterMisalErrorZBOn[4]=e4; fClusterMisalErrorZBOn[5]=e5; return; }
215 12 : void SetClusterMisalErrorBOn(Float_t err=0.) { SetClusterMisalErrorYBOn(err,err,err,err,err,err); SetClusterMisalErrorZBOn(err,err,err,err,err,err); }
216 2678408 : Float_t GetClusterMisalErrorY(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorY[i] : fClusterMisalErrorYBOn[i]); }
217 2678408 : Float_t GetClusterMisalErrorZ(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorZ[i] : fClusterMisalErrorZBOn[i]); }
218 :
219 90 : void SetUseAmplitudeInfo(Bool_t use=kTRUE) { for(Int_t i=0;i<AliITSgeomTGeo::kNLayers;i++) fUseAmplitudeInfo[i]=use; return; }
220 0 : void SetUseAmplitudeInfo(Int_t ilay,Bool_t use) { fUseAmplitudeInfo[ilay]=use; return; }
221 65736 : Bool_t GetUseAmplitudeInfo(Int_t ilay) const { return fUseAmplitudeInfo[ilay]; }
222 : // Option for Plane Efficiency evaluation
223 : void SetComputePlaneEff(Bool_t eff=kTRUE, Bool_t his=kTRUE)
224 0 : { fComputePlaneEff=eff; fHistoPlaneEff=his; return; }
225 216 : Bool_t GetComputePlaneEff() const { return fComputePlaneEff; }
226 0 : Bool_t GetHistoPlaneEff() const { return fHistoPlaneEff; }
227 0 : void SetUseTrackletsPlaneEff(Bool_t use=kTRUE) {fUseTrackletsPlaneEff=use; return;}
228 0 : Bool_t GetUseTrackletsPlaneEff() const {return fUseTrackletsPlaneEff;}
229 : void SetOptTrackletsPlaneEff(Bool_t mc=kFALSE,Bool_t bkg=kFALSE)
230 0 : {fMCTrackletsPlaneEff=mc;fBkgTrackletsPlaneEff=bkg; return;}
231 0 : Bool_t GetMCTrackletsPlaneEff() const {return fMCTrackletsPlaneEff;}
232 0 : Bool_t GetBkgTrackletsPlaneEff() const {return fBkgTrackletsPlaneEff;}
233 0 : void SetTrackleterPhiWindowL1(Float_t w=0.10) {fTrackleterPhiWindowL1=w; return;}
234 0 : Float_t GetTrackleterPhiWindowL1() const {return fTrackleterPhiWindowL1;}
235 0 : void SetTrackleterPhiWindowL2(Float_t w=0.07) {fTrackleterPhiWindowL2=w; return;}
236 0 : Float_t GetTrackleterPhiWindowL2() const {return fTrackleterPhiWindowL2;}
237 0 : void SetTrackleterZetaWindowL1(Float_t w=0.6) {fTrackleterZetaWindowL1=w; return;}
238 0 : Float_t GetTrackleterZetaWindowL1() const {return fTrackleterZetaWindowL1;}
239 0 : void SetTrackleterZetaWindowL2(Float_t w=0.40) {fTrackleterZetaWindowL2=w; return;}
240 0 : Float_t GetTrackleterZetaWindowL2() const {return fTrackleterZetaWindowL2;}
241 0 : void SetTrackleterBuildCl2TrkRefs(Bool_t v=kTRUE) {fTrackleterBuildCl2TrkRefs = v;}
242 16 : Bool_t GetTrackleterBuildCl2TrkRefs() const { return fTrackleterBuildCl2TrkRefs;}
243 : //
244 0 : void SetUpdateOncePerEventPlaneEff(Bool_t use=kTRUE) {fUpdateOncePerEventPlaneEff=use; return;}
245 0 : Bool_t GetUpdateOncePerEventPlaneEff() const {return fUpdateOncePerEventPlaneEff;}
246 0 : void SetMinContVtxPlaneEff(Int_t n=3) {fMinContVtxPlaneEff=n; return;}
247 0 : Int_t GetMinContVtxPlaneEff() const {return fMinContVtxPlaneEff;}
248 0 : void SetIPlanePlaneEff(Int_t i=0) {if(i<-1 || i>=AliITSgeomTGeo::kNLayers) return; fIPlanePlaneEff=i; }
249 0 : Int_t GetIPlanePlaneEff() const {return fIPlanePlaneEff;}
250 0 : void SetReadPlaneEffFrom0CDB(Bool_t read=kTRUE) { fReadPlaneEffFromOCDB=read; }
251 0 : Bool_t GetReadPlaneEffFromOCDB() const { return fReadPlaneEffFromOCDB; }
252 0 : void SetMinPtPlaneEff(Bool_t ptmin=0.) { fMinPtPlaneEff=ptmin; }
253 0 : Double_t GetMinPtPlaneEff() const { return fMinPtPlaneEff; }
254 0 : void SetMaxMissingClustersPlaneEff(Int_t max=0) { fMaxMissingClustersPlaneEff=max;}
255 0 : Int_t GetMaxMissingClustersPlaneEff() const {return fMaxMissingClustersPlaneEff;}
256 0 : void SetMaxMissingClustersOutPlaneEff(Int_t max=0) { fMaxMissingClustersOutPlaneEff=max;}
257 0 : Int_t GetMaxMissingClustersOutPlaneEff() const {return fMaxMissingClustersOutPlaneEff;}
258 0 : void SetRequireClusterInOuterLayerPlaneEff(Bool_t out=kTRUE) { fRequireClusterInOuterLayerPlaneEff=out;}
259 0 : Bool_t GetRequireClusterInOuterLayerPlaneEff() const {return fRequireClusterInOuterLayerPlaneEff;}
260 0 : void SetRequireClusterInInnerLayerPlaneEff(Bool_t in=kTRUE) { fRequireClusterInInnerLayerPlaneEff=in;}
261 0 : Bool_t GetRequireClusterInInnerLayerPlaneEff() const {return fRequireClusterInInnerLayerPlaneEff;}
262 0 : void SetOnlyConstraintPlaneEff(Bool_t con=kFALSE) { fOnlyConstraintPlaneEff=con; }
263 0 : Bool_t GetOnlyConstraintPlaneEff() const { return fOnlyConstraintPlaneEff; }
264 0 : void SetNSigXFromBoundaryPlaneEff(Double_t nsigx=0.) {if(nsigx<0.)fNSigXFromBoundaryPlaneEff=TMath::Abs(nsigx);else fNSigXFromBoundaryPlaneEff=nsigx;}
265 0 : Double_t GetNSigXFromBoundaryPlaneEff() const {return fNSigXFromBoundaryPlaneEff;}
266 0 : void SetNSigZFromBoundaryPlaneEff(Double_t nsigz=0.) {if(nsigz<0.)fNSigZFromBoundaryPlaneEff=TMath::Abs(nsigz);else fNSigZFromBoundaryPlaneEff=nsigz;}
267 0 : Double_t GetNSigZFromBoundaryPlaneEff() const {return fNSigZFromBoundaryPlaneEff;}
268 0 : void SetDistXFromBoundaryPlaneEff(Double_t distx=0.) {if(distx<0.)fDistXFromBoundaryPlaneEff=TMath::Abs(distx);else fDistXFromBoundaryPlaneEff=distx;}
269 0 : Double_t GetDistXFromBoundaryPlaneEff() const {return fDistXFromBoundaryPlaneEff;}
270 0 : void SetDistZFromBoundaryPlaneEff(Double_t distz=0.) {if(distz<0.)fDistZFromBoundaryPlaneEff=TMath::Abs(distz);else fDistZFromBoundaryPlaneEff=distz;}
271 0 : Double_t GetDistZFromBoundaryPlaneEff() const {return fDistZFromBoundaryPlaneEff;}
272 0 : void SetSwitchOnMaxDistNSigFrmBndPlaneEff(Bool_t flagbnd=kFALSE) {fSwitchOnMaxDistNSigFrmBndPlaneEff=flagbnd;}
273 0 : Bool_t GetSwitchOnMaxDistNSigFrmBndPlaneEff() const {return fSwitchOnMaxDistNSigFrmBndPlaneEff;}
274 0 : void SetSwitchOffStdSearchClusPlaneEff(Bool_t flagstdclus=kFALSE) {fSwitchOffStdSearchClusPlaneEff=flagstdclus;}
275 0 : Bool_t GetSwitchOffStdSearchClusPlaneEff() const {return fSwitchOffStdSearchClusPlaneEff;}
276 0 : void SetNSigXSearchClusterPlaneEff(Double_t nsigclx=0.) {if(nsigclx<0.)fNSigXSearchClusterPlaneEff=TMath::Abs(nsigclx);else fNSigXSearchClusterPlaneEff=nsigclx;}
277 0 : Double_t GetNSigXSearchClusterPlaneEff() const {return fNSigXSearchClusterPlaneEff;}
278 0 : void SetNSigZSearchClusterPlaneEff(Double_t nsigclz=0.) {if(nsigclz<0.)fNSigZSearchClusterPlaneEff=TMath::Abs(nsigclz);else fNSigZSearchClusterPlaneEff=nsigclz;}
279 0 : Double_t GetNSigZSearchClusterPlaneEff() const {return fNSigZSearchClusterPlaneEff;}
280 0 : void SetDistXSearchClusterPlaneEff(Double_t distclx=0.) {if(distclx<0.)fDistXSearchClusterPlaneEff=TMath::Abs(distclx);else fDistXSearchClusterPlaneEff=distclx;}
281 0 : Double_t GetDistXSearchClusterPlaneEff() const {return fDistXSearchClusterPlaneEff;}
282 0 : void SetDistZSearchClusterPlaneEff(Double_t distclz=0.) {if(distclz<0.)fDistZSearchClusterPlaneEff=TMath::Abs(distclz);else fDistZSearchClusterPlaneEff=distclz;}
283 0 : Double_t GetDistZSearchClusterPlaneEff() const {return fDistZSearchClusterPlaneEff;}
284 0 : void SetSwitchOnMaxDistNSigSrhClusPlaneEff(Bool_t flagbndcl=kFALSE) {fSwitchOnMaxDistNSigSrhClusPlaneEff=flagbndcl;}
285 0 : Bool_t GetSwitchOnMaxDistNSigSrhClusPlaneEff() const {return fSwitchOnMaxDistNSigSrhClusPlaneEff;}
286 0 : void SetDCACutPlaneEff(Double_t dcacpe=999.) {fDCACutPlaneEff=dcacpe;}
287 0 : Double_t GetDCACutPlaneEff() const {return fDCACutPlaneEff;}
288 0 : void SetVertexChi2CutPlaneEff(Double_t vtxchipe=999999999.) {fVertexChi2CutPlaneEff=vtxchipe;}
289 0 : Double_t GetVertexChi2CutPlaneEff() const {return fVertexChi2CutPlaneEff;}
290 :
291 : //
292 0 : void SetImproveWithVertex(Bool_t impr=kFALSE) { fImproveWithVertex=impr; return; }
293 6336 : Bool_t GetImproveWithVertex() const { return fImproveWithVertex; }
294 0 : void SetExtendedEtaAcceptance(Bool_t ext=kTRUE) { fExtendedEtaAcceptance=ext; return; }
295 12 : Bool_t GetExtendedEtaAcceptance() const { return fExtendedEtaAcceptance; }
296 0 : void SetAllowProlongationWithEmptyRoad(Bool_t allow=kTRUE) { fAllowProlongationWithEmptyRoad=allow; return; }
297 116 : Bool_t GetAllowProlongationWithEmptyRoad() const { return fAllowProlongationWithEmptyRoad; }
298 :
299 0 : void SetUseBadZonesFromOCDB(Bool_t use=kTRUE) { fUseBadZonesFromOCDB=use; return; }
300 6608 : Bool_t GetUseBadZonesFromOCDB() const { return fUseBadZonesFromOCDB; }
301 :
302 0 : void SetUseSingleBadChannelsFromOCDB(Bool_t use=kTRUE) { fUseSingleBadChannelsFromOCDB=use; return; }
303 6124 : Bool_t GetUseSingleBadChannelsFromOCDB() const { return fUseSingleBadChannelsFromOCDB; }
304 :
305 0 : void SetMinFractionOfBadInRoad(Float_t frac=0) { fMinFractionOfBadInRoad=frac; return; }
306 0 : Float_t GetMinFractionOfBadInRoad() const { return fMinFractionOfBadInRoad; }
307 :
308 0 : void SetOutwardFindingSA() {fInwardFlagSA=kFALSE;}
309 0 : void SetInwardFindingSA() {fInwardFlagSA=kTRUE;}
310 4 : Bool_t GetInwardFindingSA() const {return fInwardFlagSA;}
311 0 : void SetOuterStartLayerSA(Int_t lay) { fOuterStartLayerSA=lay; return; }
312 4 : Int_t GetOuterStartLayerSA() const { return fOuterStartLayerSA; }
313 0 : void SetInnerStartLayerSA(Int_t lay) { fInnerStartLayerSA=lay; return; }
314 0 : Int_t GetInnerStartLayerSA() const { return fInnerStartLayerSA; }
315 0 : void SetMinNPointsSA(Int_t np) { fMinNPointsSA=np; return; }
316 4 : Int_t GetMinNPointsSA() const { return fMinNPointsSA;}
317 0 : void SetFactorSAWindowSizes(Double_t fact=1.) { fFactorSAWindowSizes=fact; return; }
318 0 : Double_t GetFactorSAWindowSizes() const { return fFactorSAWindowSizes; }
319 :
320 0 : void SetNLoopsSA(Int_t nl=10) {fNLoopsSA=nl;}
321 16 : Int_t GetNLoopsSA() const { return fNLoopsSA;}
322 : void SetPhiLimitsSA(Double_t phimin,Double_t phimax){
323 0 : fMinPhiSA=phimin; fMaxPhiSA=phimax;
324 0 : }
325 16 : Double_t GetMinPhiSA() const {return fMinPhiSA;}
326 16 : Double_t GetMaxPhiSA() const {return fMaxPhiSA;}
327 : void SetLambdaLimitsSA(Double_t lambmin,Double_t lambmax){
328 0 : fMinLambdaSA=lambmin; fMaxLambdaSA=lambmax;
329 0 : }
330 16 : Double_t GetMinLambdaSA() const {return fMinLambdaSA;}
331 16 : Double_t GetMaxLambdaSA() const {return fMaxLambdaSA;}
332 :
333 0 : void SetSAMinClusterCharge(Float_t minq=0.) {fMinClusterChargeSA=minq;}
334 16 : Float_t GetSAMinClusterCharge() const {return fMinClusterChargeSA;}
335 :
336 0 : void SetSAOnePointTracks() { fSAOnePointTracks=kTRUE; return; }
337 16 : Bool_t GetSAOnePointTracks() const { return fSAOnePointTracks; }
338 :
339 0 : void SetSAUseAllClusters(Bool_t opt=kTRUE) { fSAUseAllClusters=opt; return; }
340 16 : Bool_t GetSAUseAllClusters() const { return fSAUseAllClusters; }
341 :
342 0 : void SetMaxSPDcontrForSAToUseAllClusters(Int_t contr=50) { fMaxSPDcontrForSAToUseAllClusters=contr; return; }
343 0 : Int_t GetMaxSPDcontrForSAToUseAllClusters() const { return fMaxSPDcontrForSAToUseAllClusters; }
344 :
345 0 : void SetMaxSPDClforSPDOnly(Int_t ncl=400) {fMaxSPDClforSPDOnly = ncl; return; }
346 13172 : Int_t GetMaxSPDClforSPDOnly() const { return fMaxSPDClforSPDOnly; }
347 :
348 0 : void SetSAUsedEdxInfo(Bool_t opt=kTRUE) { fSAUsedEdxInfo=opt; return; }
349 32 : Bool_t GetSAUsedEdxInfo() const { return fSAUsedEdxInfo; }
350 :
351 6 : void SetFindV0s(Bool_t find=kTRUE) { fFindV0s=find; return; }
352 32 : Bool_t GetFindV0s() const { return fFindV0s; }
353 :
354 0 : void SetStoreLikeSignV0s(Bool_t like=kFALSE) { fStoreLikeSignV0s=like; return; }
355 1144 : Bool_t GetStoreLikeSignV0s() const { return fStoreLikeSignV0s; }
356 :
357 : void SetLayersParameters();
358 :
359 0 : void SetLayerToSkip(Int_t i) { fLayersToSkip[i]=1; return; }
360 96 : Int_t GetLayersToSkip(Int_t i) const { return fLayersToSkip[i]; }
361 :
362 0 : void SetUseUnfoldingInClusterFinderSPD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSPD=use; return; }
363 292 : Bool_t GetUseUnfoldingInClusterFinderSPD() const { return fUseUnfoldingInClusterFinderSPD; }
364 0 : void SetUseUnfoldingInClusterFinderSDD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSDD=use; return; }
365 0 : Bool_t GetUseUnfoldingInClusterFinderSDD() const { return fUseUnfoldingInClusterFinderSDD; }
366 0 : void SetUseUnfoldingInClusterFinderSSD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSSD=use; return; }
367 1264 : Bool_t GetUseUnfoldingInClusterFinderSSD() const { return fUseUnfoldingInClusterFinderSSD; }
368 :
369 0 : void SetUseBadChannelsInClusterFinderSSD(Bool_t use=kFALSE) { fUseBadChannelsInClusterFinderSSD=use; return; }
370 9264 : Bool_t GetUseBadChannelsInClusterFinderSSD() const { return fUseBadChannelsInClusterFinderSSD; }
371 :
372 0 : void SetUseSDDCorrectionMaps(Bool_t use=kTRUE) {fUseSDDCorrectionMaps=use;}
373 456 : Bool_t GetUseSDDCorrectionMaps() const {return fUseSDDCorrectionMaps;}
374 0 : void SetUseSDDClusterSizeSelection(Bool_t use=kTRUE) {fUseSDDClusterSizeSelection=use;}
375 460 : Bool_t GetUseSDDClusterSizeSelection() const {return fUseSDDClusterSizeSelection;}
376 0 : void SetMinClusterChargeSDD(Float_t qcut=0.){fMinClusterChargeSDD=qcut;}
377 456 : Float_t GetMinClusterChargeSDD() const {return fMinClusterChargeSDD;}
378 :
379 0 : void SetUseChargeMatchingInClusterFinderSSD(Bool_t use=kTRUE) { fUseChargeMatchingInClusterFinderSSD=use; return; }
380 532 : Bool_t GetUseChargeMatchingInClusterFinderSSD() const { return fUseChargeMatchingInClusterFinderSSD; }
381 :
382 0 : void SetUseCosmicRunShiftsSSD(Bool_t use=kFALSE) { fUseCosmicRunShiftsSSD=use; return; }
383 13326 : Bool_t GetUseCosmicRunShiftsSSD() const { return fUseCosmicRunShiftsSSD; }
384 :
385 : // SPD Tracklets (D. Elia)
386 0 : void SetTrackleterPhiWindow(Float_t w=0.08) {fTrackleterPhiWindow=w;}
387 0 : void SetTrackleterThetaWindow(Float_t w=0.025) {fTrackleterThetaWindow=w;}
388 0 : void SetTrackleterPhiShift(Float_t w=0.0045) {fTrackleterPhiShift=w;}
389 16 : Float_t GetTrackleterPhiWindow() const {return fTrackleterPhiWindow;}
390 16 : Float_t GetTrackleterThetaWindow() const {return fTrackleterThetaWindow;}
391 16 : Float_t GetTrackleterPhiShift() const {return fTrackleterPhiShift;}
392 0 : void SetTrackleterRemoveClustersFromOverlaps(Bool_t use=kTRUE) { fTrackleterRemoveClustersFromOverlaps=use; return; }
393 16 : Bool_t GetTrackleterRemoveClustersFromOverlaps() const { return fTrackleterRemoveClustersFromOverlaps; }
394 0 : void SetTrackleterPhiOverlapCut(Float_t w=0.005) {fTrackleterPhiOverlapCut=w;}
395 0 : void SetTrackleterZetaOverlapCut(Float_t w=0.05) {fTrackleterZetaOverlapCut=w;}
396 16 : Float_t GetTrackleterPhiOverlapCut() const {return fTrackleterPhiOverlapCut;}
397 16 : Float_t GetTrackleterZetaOverlapCut() const {return fTrackleterZetaOverlapCut;}
398 0 : void SetTrackleterPhiRotationAngle(Float_t w=0.0) {fTrackleterPhiRotationAngle=w;}
399 16 : Float_t GetTrackleterPhiRotationAngle() const {return fTrackleterPhiRotationAngle;}
400 16 : Bool_t GetTrackleterStoreSPD2SingleCl() const {return fTrackleterStoreSPD2SingleCl;}
401 0 : void SetTrackleterStoreSPD2SingleCl(Bool_t v=kTRUE) {fTrackleterStoreSPD2SingleCl = v;}
402 : //
403 0 : void SetTrackleterNStdDevCut(Float_t f=1.) {fTrackleterNStdDev = f<0.01 ? 0.01 : f;}
404 16 : Float_t GetTrackleterNStdDevCut() const {return fTrackleterNStdDev;}
405 0 : void SetTrackleterScaleDThetaBySin2T(Bool_t v=kFALSE) {fScaleDTBySin2T = v;}
406 16 : Bool_t GetTrackleterScaleDThetaBySin2T() const {return fScaleDTBySin2T;}
407 : //
408 0 : void SetSPDRemoveNoisyFlag(Bool_t value) {fSPDRemoveNoisyFlag = value;}
409 2060 : Bool_t GetSPDRemoveNoisyFlag() const {return fSPDRemoveNoisyFlag;}
410 0 : void SetSPDRemoveDeadFlag(Bool_t value) {fSPDRemoveDeadFlag = value;}
411 2060 : Bool_t GetSPDRemoveDeadFlag() const {return fSPDRemoveDeadFlag;}
412 :
413 : //
414 0 : void SetAlignFilterCosmics(Bool_t b=kTRUE) {fAlignFilterCosmics=b;}
415 0 : void SetAlignFilterCosmicMergeTracks(Bool_t b=kTRUE) {fAlignFilterCosmicMergeTracks=b;}
416 0 : void SetAlignFilterMinITSPoints(Int_t n=4) {fAlignFilterMinITSPoints=n;}
417 0 : void SetAlignFilterMinITSPointsMerged(Int_t n=4) {fAlignFilterMinITSPointsMerged=n;}
418 0 : void SetAlignFilterOnlyITSSATracks(Bool_t b=kTRUE) {fAlignFilterOnlyITSSATracks=b;}
419 0 : void SetAlignFilterOnlyITSTPCTracks(Bool_t b=kFALSE) {fAlignFilterOnlyITSTPCTracks=b;}
420 0 : void SetAlignFilterUseLayer(Int_t ilay,Bool_t use) {fAlignFilterUseLayer[ilay]=use;}
421 0 : void SetAlignFilterSkipExtra(Bool_t b=kFALSE) {fAlignFilterSkipExtra=b;}
422 0 : void SetAlignFilterMaxMatchingAngle(Float_t max=0.085/*5deg*/) {fAlignFilterMaxMatchingAngle=max;}
423 0 : void SetAlignFilterMinAngleWrtModulePlanes(Float_t min=0.52/*30deg*/) {fAlignFilterMinAngleWrtModulePlanes=min;}
424 0 : void SetAlignFilterMinPt(Float_t min=0.) {fAlignFilterMinPt=min;}
425 0 : void SetAlignFilterMaxPt(Float_t max=1.e10) {fAlignFilterMaxPt=max;}
426 0 : void SetAlignFilterFillQANtuples(Bool_t b=kTRUE) {fAlignFilterFillQANtuples=b;}
427 0 : Bool_t GetAlignFilterCosmics() const {return fAlignFilterCosmics;}
428 0 : Bool_t GetAlignFilterCosmicMergeTracks() const {return fAlignFilterCosmicMergeTracks;}
429 0 : Int_t GetAlignFilterMinITSPoints() const {return fAlignFilterMinITSPoints;}
430 0 : Int_t GetAlignFilterMinITSPointsMerged() const {return fAlignFilterMinITSPointsMerged;}
431 0 : Bool_t GetAlignFilterOnlyITSSATracks() const {return fAlignFilterOnlyITSSATracks;}
432 0 : Bool_t GetAlignFilterOnlyITSTPCTracks() const {return fAlignFilterOnlyITSTPCTracks;}
433 0 : Bool_t GetAlignFilterUseLayer(Int_t i) const {return fAlignFilterUseLayer[i];}
434 0 : Bool_t GetAlignFilterSkipExtra() const {return fAlignFilterSkipExtra;}
435 0 : Float_t GetAlignFilterMaxMatchingAngle() const {return fAlignFilterMaxMatchingAngle;}
436 0 : Float_t GetAlignFilterMinAngleWrtModulePlanes() const {return fAlignFilterMinAngleWrtModulePlanes;}
437 0 : Float_t GetAlignFilterMinPt() const {return fAlignFilterMinPt;}
438 0 : Float_t GetAlignFilterMaxPt() const {return fAlignFilterMaxPt;}
439 0 : Bool_t GetAlignFilterFillQANtuples() const {return fAlignFilterFillQANtuples;}
440 :
441 : // Multiplicity Reconstructor
442 16 : Float_t GetMultCutPxDrSPDin() const {return fMultCutPxDrSPDin;}
443 16 : Float_t GetMultCutPxDrSPDout() const {return fMultCutPxDrSPDout;}
444 16 : Float_t GetMultCutPxDz() const {return fMultCutPxDz;}
445 16 : Float_t GetMultCutDCArz() const {return fMultCutDCArz;}
446 16 : Float_t GetMultCutMinElectronProbTPC() const {return fMultCutMinElectronProbTPC;}
447 16 : Float_t GetMultCutMinElectronProbESD() const {return fMultCutMinElectronProbESD;}
448 16 : Float_t GetMultCutMinP() const {return fMultCutMinP;}
449 16 : Float_t GetMultCutMinRGamma() const {return fMultCutMinRGamma;}
450 16 : Float_t GetMultCutMinRK0() const {return fMultCutMinRK0;}
451 16 : Float_t GetMultCutMinPointAngle() const {return fMultCutMinPointAngle;}
452 16 : Float_t GetMultCutMaxDCADauther() const {return fMultCutMaxDCADauther;}
453 16 : Float_t GetMultCutMassGamma() const {return fMultCutMassGamma;}
454 16 : Float_t GetMultCutMassGammaNSigma() const {return fMultCutMassGammaNSigma;}
455 16 : Float_t GetMultCutMassK0() const {return fMultCutMassK0;}
456 16 : Float_t GetMultCutMassK0NSigma() const {return fMultCutMassK0NSigma;}
457 16 : Float_t GetMultCutChi2cGamma() const {return fMultCutChi2cGamma;}
458 16 : Float_t GetMultCutChi2cK0() const {return fMultCutChi2cK0;}
459 16 : Float_t GetMultCutGammaSFromDecay() const {return fMultCutGammaSFromDecay;}
460 16 : Float_t GetMultCutK0SFromDecay() const {return fMultCutK0SFromDecay;}
461 16 : Float_t GetMultCutMaxDCA() const {return fMultCutMaxDCA;}
462 : //
463 0 : void SetMultCutPxDrSPDin(Float_t v=0.1) { fMultCutPxDrSPDin = v;}
464 0 : void SetMultCutPxDrSPDout(Float_t v=0.15) { fMultCutPxDrSPDout = v;}
465 0 : void SetMultCutPxDz(Float_t v=0.2) { fMultCutPxDz = v;}
466 0 : void SetMultCutDCArz(Float_t v=0.5) { fMultCutDCArz = v;}
467 0 : void SetMultCutMinElectronProbTPC(Float_t v=0.5) { fMultCutMinElectronProbTPC = v;}
468 0 : void SetMultCutMinElectronProbESD(Float_t v=0.1) { fMultCutMinElectronProbESD = v;}
469 0 : void SetMultCutMinP(Float_t v=0.05) { fMultCutMinP = v;}
470 0 : void SetMultCutMinRGamma(Float_t v=2.) { fMultCutMinRGamma = v;}
471 0 : void SetMultCutMinRK0(Float_t v=1.) { fMultCutMinRK0 = v;}
472 0 : void SetMultCutMinPointAngle(Float_t v=0.98) { fMultCutMinPointAngle = v;}
473 0 : void SetMultCutMaxDCADauther(Float_t v=0.5) { fMultCutMaxDCADauther = v;}
474 0 : void SetMultCutMassGamma(Float_t v=0.03) { fMultCutMassGamma = v;}
475 0 : void SetMultCutMassGammaNSigma(Float_t v=5.) { fMultCutMassGammaNSigma = v;}
476 0 : void SetMultCutMassK0(Float_t v=0.03) { fMultCutMassK0 = v;}
477 0 : void SetMultCutMassK0NSigma(Float_t v=5.) { fMultCutMassK0NSigma = v;}
478 0 : void SetMultCutChi2cGamma(Float_t v=2.) { fMultCutChi2cGamma = v;}
479 0 : void SetMultCutChi2cK0(Float_t v=2.) { fMultCutChi2cK0 = v;}
480 0 : void SetMultCutGammaSFromDecay(Float_t v=-10.) { fMultCutGammaSFromDecay = v;}
481 0 : void SetMultCutK0SFromDecay(Float_t v=-10.) { fMultCutK0SFromDecay = v;}
482 0 : void SetMultCutMaxDCA(Float_t v=1.) { fMultCutMaxDCA = v;}
483 : //
484 1068 : AliESDV0Params *GetESDV0Params() const {return fESDV0Params;}
485 : //
486 : // Lorentz angle
487 2060 : Bool_t GetCorrectLorentzAngleSPD() const {return fCorrectLorentzAngleSPD;}
488 2060 : Float_t GetTanLorentzAngleHolesSPD() const {return fTanLorentzAngleHolesSPD;}
489 4 : Bool_t GetCorrectLorentzAngleSSD() const {return fCorrectLorentzAngleSSD;}
490 4 : Float_t GetTanLorentzAngleHolesSSD() const {return fTanLorentzAngleHolesSSD;}
491 4 : Float_t GetTanLorentzAngleElectronsSSD() const {return fTanLorentzAngleElectronsSSD;}
492 :
493 0 : void SetCorrectLorentzAngleSPD(Bool_t flag) {fCorrectLorentzAngleSPD=flag;}
494 0 : void SetTanLorentzAngleHolesSPD(Float_t la) {fTanLorentzAngleHolesSPD=la;}
495 0 : void SetCorrectLorentzAngleSSD(Bool_t flag) {fCorrectLorentzAngleSSD=flag;}
496 0 : void SetTanLorentzAngleHolesSSD(Float_t la) {fTanLorentzAngleHolesSSD=la;}
497 0 : void SetTanLorentzAngleElectronsSSD(Float_t la) {fTanLorentzAngleElectronsSSD=la;}
498 :
499 : // Option for local reconstruction
500 : Bool_t SetOptReco(TString r);
501 0 : void ReconstructOnlySPD(){fOptReco="SPD";}
502 16 : TString GetOptReco() const {return fOptReco;}
503 :
504 0 : void SetRemoveFastOrFromDeadRaw(Bool_t flag) {fRemoveFastOrFromDeadRaw=flag;}
505 0 : void SetRemoveFastOrFromDeadMC(Bool_t flag) {fRemoveFastOrFromDeadMC=flag;}
506 :
507 : // Option for FastOr reco conditions
508 8 : Bool_t GetRemoveFastOrFromDeadRaw() const {return fRemoveFastOrFromDeadRaw;}
509 8 : Bool_t GetRemoveFastOrFromDeadMC() const {return fRemoveFastOrFromDeadMC;}
510 : void PrintFastOrRecoParam() const;
511 :
512 : // RS Max number of clusters seen in PbPb2011 was 7000
513 : // Even if you change it, keep it <65535
514 : enum {kMaxClusterPerLayer=32000}; // max clusters per layer
515 : enum {kMaxClusterPerLayer5 =kMaxClusterPerLayer*2/5};
516 : enum {kMaxClusterPerLayer10=kMaxClusterPerLayer*2/10};
517 : enum {kMaxClusterPerLayer20=kMaxClusterPerLayer*2/20};
518 : //
519 : /*
520 : enum {kMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer
521 : enum {kMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer
522 : enum {kMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer
523 : enum {kMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer
524 : */
525 : protected:
526 : //
527 : static const Int_t fgkLayersNotToSkip[AliITSgeomTGeo::kNLayers]; // array with layers not to skip
528 : static const Int_t fgkLastLayerToTrackTo=0; // innermost layer
529 : static const Int_t fgkMaxDetectorPerLayer=1000; // max clusters per layer
530 : static const Double_t fgkriw; // TPC inner wall radius
531 : static const Double_t fgkdiw; // TPC inner wall x/X0
532 : static const Double_t fgkX0iw; // TPC inner wall X0
533 : static const Double_t fgkrcd; // TPC central drum radius
534 : static const Double_t fgkdcd; // TPC central drum x/X0
535 : static const Double_t fgkX0cd; // TPC central drum X0
536 : static const Double_t fgkyr; // TPC rods y (tracking c.s.)
537 : static const Double_t fgkdr; // TPC rods x/X0
538 : static const Double_t fgkzm; // TPC membrane z
539 : static const Double_t fgkdm; // TPC membrane x/X0
540 : static const Double_t fgkrs; // ITS screen radius
541 : static const Double_t fgkds; // ITS screed x/X0
542 : static const Double_t fgkrInsideITSscreen; // inside ITS screen radius
543 : static const Double_t fgkrInsideSPD1; // inside SPD1 radius
544 : static const Double_t fgkrPipe; // pipe radius
545 : static const Double_t fgkrInsidePipe; // inside pipe radius
546 : static const Double_t fgkrOutsidePipe; // outside pipe radius
547 : static const Double_t fgkdPipe; // pipe x/X0
548 : static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius
549 : static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius
550 : static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0
551 : static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0
552 : static const Double_t fgkX0Air; // air X0
553 : static const Double_t fgkX0Be; // Berillium X0
554 : static const Double_t fgkBoundaryWidth; // to define track at detector boundary
555 : static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors
556 : static const Double_t fgkSPDdetzlength; // SPD ladder length in z (=7.072-2*0.056)
557 : static const Double_t fgkSPDdetxlength; // SPD ladder length in x (=1.410-2*0.056)
558 :
559 :
560 : Int_t fTracker; // ITS tracker to be used (see AliITSReconstructor)
561 : Bool_t fITSonly; // tracking only in ITS (no TPC)
562 : Int_t fVertexer; // ITS vertexer to be used (see AliITSReconstructor)
563 : Int_t fPID; // ITS PID method to be used (see AliITSReconstructor)
564 :
565 :
566 : // SPD 3D Vertexer configuration
567 : Float_t fVtxr3DZCutWide; // Z extension of the wide fiducial region for vertexer 3D
568 : Float_t fVtxr3DRCutWide; // R extension of the wide fiducial region for vertexer 3D
569 : Float_t fVtxr3DZCutNarrow; // Z extension of the narrow fiducial region for vertexer 3D
570 : Float_t fVtxr3DRCutNarrow; // R extension of the narrow fiducial region for vertexer 3D
571 : Float_t fVtxr3DPhiCutLoose; // loose deltaPhi cut to define tracklets in vertexer 3D
572 : Float_t fVtxr3DPhiCutTight; // tight deltaPhi cut to define tracklets in vertexer 3D
573 : Float_t fVtxr3DDCACut; // cut on tracklet-to-tracklet DCA in vertexer3D
574 : Int_t fVtxr3DPileupAlgo; // pileup algorithm (0 = VtxZ, 1 = 3D - 2 step, 2 = 3D all in once)
575 : UChar_t fVtxr3DHighMultAlgo; // downscaling if 0 - traces if 1
576 :
577 : Int_t fLayersToSkip[AliITSgeomTGeo::kNLayers]; // array with layers to skip (MI,SA)
578 :
579 : // spatial resolutions of the detectors
580 : Double_t fSigmaY2[AliITSgeomTGeo::kNLayers]; // y
581 : Double_t fSigmaZ2[AliITSgeomTGeo::kNLayers]; // z
582 : //
583 : Double_t fMaxSnp; // maximum of sin(phi) (MI)
584 : //
585 : // search road (MI)
586 : Double_t fNSigmaYLayerForRoadY; // y
587 : Double_t fNSigmaRoadY; // y
588 : Double_t fNSigmaZLayerForRoadZ; // z
589 : Double_t fNSigmaRoadZ; // z
590 : Double_t fNSigma2RoadZC; // z
591 : Double_t fNSigma2RoadYC; // y
592 : Double_t fNSigma2RoadZNonC; // z
593 : Double_t fNSigma2RoadYNonC; // y
594 :
595 : Double_t fRoadMisal; // [cm] increase of road for misalignment (MI)
596 : //
597 : // chi2 cuts
598 : Double_t fMaxChi2PerCluster[AliITSgeomTGeo::kNLayers-1]; // max chi2 for MIP (MI)
599 : Double_t fMaxNormChi2NonC[AliITSgeomTGeo::kNLayers]; //max norm chi2 for non constrained tracks (MI)
600 : Double_t fMaxNormChi2C[AliITSgeomTGeo::kNLayers]; //max norm chi2 for constrained tracks (MI)
601 : Double_t fMaxNormChi2NonCForHypothesis; //max norm chi2 (on layers 0,1,2) for hypotheis to be kept (MI)
602 : Double_t fMaxChi2; // used to initialize variables needed to find minimum chi2 (MI,V2)
603 : Double_t fMaxChi2s[AliITSgeomTGeo::kNLayers]; // max predicted chi2 (cluster & track prol.) (MI)
604 : //
605 : Double_t fMaxRoad; // (V2)
606 : //
607 : Double_t fMaxChi2In; // (NOT USED)
608 : Double_t fMaxChi2sR[AliITSgeomTGeo::kNLayers]; // (NOT USED)
609 : Double_t fChi2PerCluster; // (NOT USED)
610 : // search for extra clusters
611 : Bool_t fSearchForExtras; // swicth yes/no for the search of extra-clusters in RefitInward step
612 : //
613 : // default primary vertex (MI,V2)
614 : Double_t fXV; // x
615 : Double_t fYV; // y
616 : Double_t fZV; // z
617 : Double_t fSigmaXV; // x
618 : Double_t fSigmaYV; // y
619 : Double_t fSigmaZV; // z
620 : Double_t fVertexCut; // (V2)
621 : Double_t fMaxDZforPrimTrk; // maximum (imp. par.)/(1+layer) to define
622 : // a primary and apply vertex constraint (MI)
623 : Double_t fMaxDZToUseConstraint; // maximum (imp. par.) for tracks to be
624 : // prolonged with constraint
625 : // cuts to decide if trying to prolong a TPC track (MI)
626 : Double_t fMaxDforV0dghtrForProlongation; // max. rphi imp. par. cut for V0 daughter
627 : //
628 : Double_t fMaxDForProlongation; // max. rphi imp. par. cut
629 : Double_t fMaxDZForProlongation; // max. 3D imp. par. cut
630 : Double_t fMinPtForProlongation; // min. pt cut
631 :
632 : // parameters to create "virtual" clusters in SPD dead zone (MI)
633 : Bool_t fAddVirtualClustersInDeadZone; // add if kTRUE
634 : Double_t fZWindowDeadZone; // window size
635 : Double_t fSigmaXDeadZoneHit2; // x error virtual cls
636 : Double_t fSigmaZDeadZoneHit2; // z error virtual cls
637 : Double_t fXPassDeadZoneHits; // x distance between clusters
638 :
639 : Bool_t fSkipSubdetsNotInTriggerCluster; // skip the subdetectors that are not in the trigger cluster
640 :
641 : Int_t fUseTGeoInTracker; // use TGeo to get material budget in tracker MI
642 : Double_t fStepSizeTGeo; // step size (cm)
643 : // in AliITStrackerMI::CorrectFor*Material methods
644 : Bool_t fAllowSharedClusters; // if kFALSE don't set to kITSin tracks with shared clusters (MI)
645 : Int_t fClusterErrorsParam; // parametrization for cluster errors (MI), see AliITSRecoParam::GetError()
646 : Float_t fClusterMisalErrorY[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
647 : Float_t fClusterMisalErrorZ[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
648 : Float_t fClusterMisalErrorYBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
649 : Float_t fClusterMisalErrorZBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
650 :
651 : Bool_t fUseAmplitudeInfo[AliITSgeomTGeo::kNLayers]; // use cluster charge in cluster-track matching (SDD,SSD) (MI)
652 :
653 : // Plane Efficiency evaluation
654 : Bool_t fComputePlaneEff; // flag to enable computation of PlaneEfficiency
655 : Bool_t fHistoPlaneEff; // flag to enable auxiliary PlaneEff histograms (e.g. residual distributions)
656 : Bool_t fUseTrackletsPlaneEff; // flag to enable estimate of SPD PlaneEfficiency using tracklets
657 : Bool_t fMCTrackletsPlaneEff; // flag to enable the use of MC info for corrections (SPD PlaneEff using tracklets)
658 : Bool_t fBkgTrackletsPlaneEff; // flag to evaluate background instead of normal use (SPD PlaneEff using tracklets)
659 : Float_t fTrackleterPhiWindowL1; // Search window in phi for inner layer (1) (SPD PlaneEff using tracklets)
660 : Float_t fTrackleterPhiWindowL2; // Search window in phi for outer layer (2) (SPD PlaneEff using tracklets)
661 : Float_t fTrackleterZetaWindowL1; // Search window in zeta for inner layer (1) (SPD PlaneEff using tracklets)
662 : Float_t fTrackleterZetaWindowL2; // Search window in zeta for outer layer (2) (SPD PlaneEff using tracklets)
663 : Bool_t fUpdateOncePerEventPlaneEff; // option to update chip efficiency once/event (to avoid doubles)
664 : Int_t fMinContVtxPlaneEff; // min number of contributors to ESD vtx for SPD PlaneEff using tracklets
665 : Int_t fIPlanePlaneEff; // index of the plane (in the range [-1,5]) to study the efficiency (-1 ->Tracklets)
666 : Bool_t fReadPlaneEffFromOCDB; // enable initial reading of Plane Eff statistics from OCDB
667 : // The analized events would be used to increase the statistics
668 : Double_t fMinPtPlaneEff; // minimum p_t of the track to be used for Plane Efficiency evaluation
669 : Int_t fMaxMissingClustersPlaneEff; // max n. of (other) layers without a cluster associated to the track
670 : Int_t fMaxMissingClustersOutPlaneEff; // max n. of outermost layers without a cluster associated to the track
671 : Bool_t fRequireClusterInOuterLayerPlaneEff; // if kTRUE, then only tracks with an associated cluster on the closest
672 : Bool_t fRequireClusterInInnerLayerPlaneEff; // outer/inner layer are used. It has no effect for outermost/innermost layer
673 : Bool_t fOnlyConstraintPlaneEff; // if kTRUE, use only constrained tracks at primary vertex for Plane Eff.
674 : Double_t fNSigXFromBoundaryPlaneEff; // accept one track for PlaneEff if distance from border (in loc x or z)
675 : Double_t fNSigZFromBoundaryPlaneEff; // is greater than fNSigXFromBoundaryPlaneEff * Track_precision
676 : Double_t fDistXFromBoundaryPlaneEff; // accept one track for PlaneEff if distance from border (in loc x or z)
677 : Double_t fDistZFromBoundaryPlaneEff; // is greater than fDistXFromBoundaryPlaneEff centimeters
678 : Bool_t fSwitchOnMaxDistNSigFrmBndPlaneEff; //if kTRUE,use max(fDistXFromBoundaryPlaneEff,fNSigXFromBoundaryPlaneEff) to accept tracks
679 : Bool_t fSwitchOffStdSearchClusPlaneEff; //if kTRUE,use fNSigXSearchClusterPlaneEff and fDistXSearchClusterPlaneEff
680 : Double_t fNSigXSearchClusterPlaneEff; // cluster search in distance from track impact point (in loc x or z)
681 : Double_t fNSigZSearchClusterPlaneEff; // less than fNSigXSearchClusterPlaneEff * Track_precision
682 : Double_t fDistXSearchClusterPlaneEff; // cluster found in distance from track impact point (in loc x or z)
683 : Double_t fDistZSearchClusterPlaneEff; // is greater than fDistXSearchClusterPlaneEff centimeters
684 : Bool_t fSwitchOnMaxDistNSigSrhClusPlaneEff; //if kTRUE,use max(fDistXSearchClusterPlaneEff,fNSigXSearchClusterPlaneEff) to accept tracks
685 : Double_t fDCACutPlaneEff; // this set the cut on DCA in rphi plane when evaluating PlaneEff(SPD0)
686 : Double_t fVertexChi2CutPlaneEff; // and also with a cut on the chi2
687 :
688 : Bool_t fImproveWithVertex; // use the method AliITStrackV2::Improve() to point to the vertex during prolongation
689 : Bool_t fExtendedEtaAcceptance; // enable jumping from TPC to SPD at large eta (MI)
690 : Bool_t fUseBadZonesFromOCDB; // enable using OCDB info on dead modules and chips (MI)
691 : Bool_t fUseSingleBadChannelsFromOCDB; // enable using OCDB info on bad single SPD pixels and SDD anodes (MI)
692 : Float_t fMinFractionOfBadInRoad; // to decide whether to skip the layer (MI)
693 : Bool_t fAllowProlongationWithEmptyRoad; // allow to prolong even if road is empty (MI)
694 : Int_t fInwardFlagSA; // flag for inward track finding in SA
695 : Int_t fOuterStartLayerSA; // outer ITS layer to start track in SA outward
696 : Int_t fInnerStartLayerSA; // inner ITS layer to start track in SA inward
697 : Int_t fMinNPointsSA; // min. number of ITS clusters for a SA track
698 : Double_t fFactorSAWindowSizes; // larger window sizes in SA
699 : Int_t fNLoopsSA; // number of loops in tracker SA
700 : Double_t fMinPhiSA; // minimum phi value for SA windows
701 : Double_t fMaxPhiSA; // maximum phi value for SA windows
702 : Double_t fMinLambdaSA; // minimum lambda value for SA windows
703 : Double_t fMaxLambdaSA; // maximum lambda value for SA windows
704 : Float_t fMinClusterChargeSA; // minimum SDD,SSD cluster charge for SA tarcker
705 : Bool_t fSAOnePointTracks; // one-cluster tracks in SA (only for cosmics!)
706 : Bool_t fSAUseAllClusters; // do not skip clusters used by MI (same track twice in AliESDEvent!)
707 : Int_t fMaxSPDcontrForSAToUseAllClusters; // maximum nContr of SPD vertex for which trackerSA will reuse all ITS clusters
708 : Int_t fMaxSPDClforSPDOnly; // clusterize SPDonly if N SPD0,1 clusters > threshold
709 : Bool_t fSAUsedEdxInfo; // use/not use dE/dx in ITS for assign mass hypothesis
710 :
711 : Bool_t fSelectBestMIP03; // (MI) Multiply norm chi2 by interpolated one in hypthesis analysis
712 : Bool_t fFlagFakes; // (MI) preform shared cluster analysis and flag candidates for fakes
713 : Bool_t fUseImproveKalman; // (MI) Use ImproveKalman version of AliITSTrackV2 instead of Improve
714 :
715 : Bool_t fFindV0s; // flag to enable V0 finder (MI)
716 : Bool_t fStoreLikeSignV0s; // flag to store like-sign V0s (MI)
717 :
718 : // cluster unfolding in ITS cluster finders
719 : Bool_t fUseUnfoldingInClusterFinderSPD; // SPD
720 : Bool_t fUseUnfoldingInClusterFinderSDD; // SDD
721 : Bool_t fUseUnfoldingInClusterFinderSSD; // SSD
722 :
723 : Bool_t fUseBadChannelsInClusterFinderSSD; // flag to switch on bad channels in CF SSD
724 :
725 : Bool_t fUseSDDCorrectionMaps; // flag for use of SDD maps in C.F.
726 : Bool_t fUseSDDClusterSizeSelection; // cut on SDD cluster size
727 : Float_t fMinClusterChargeSDD; // cut on SDD cluster charge
728 :
729 : Bool_t fUseChargeMatchingInClusterFinderSSD; // SSD
730 :
731 : // SPD Tracklets (D. Elia)
732 : Float_t fTrackleterPhiWindow; // Search window in phi
733 : Float_t fTrackleterThetaWindow; // Search window in theta
734 : Float_t fTrackleterPhiShift; // Phi shift reference value (at 0.5 T)
735 : Bool_t fTrackleterRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps
736 : Float_t fTrackleterPhiOverlapCut; // Fiducial window in phi for overlap cut
737 : Float_t fTrackleterZetaOverlapCut; // Fiducial window in eta for overlap cut
738 : Float_t fTrackleterPhiRotationAngle; // Angle to rotate cluster in the SPD inner layer for combinatorial reco only
739 : Float_t fTrackleterNStdDev; // cut on the number of standard deviations
740 : Bool_t fScaleDTBySin2T; // scale Dtheta by 1/sin^2(theta)
741 : Bool_t fTrackleterStoreSPD2SingleCl; // request storing of L2 singles
742 : //
743 : Bool_t fTrackleterBuildCl2TrkRefs; // build cluster to track references in AliMultiplicity
744 : //
745 : Bool_t fUseCosmicRunShiftsSSD; // SSD time shifts for cosmic run 2007/2008 (use for data taken up to 18 sept 2008)
746 :
747 :
748 : // SPD flags to specify whether noisy and dead pixels
749 : // should be removed at the local reconstruction step (default and safe way is true for both)
750 : Bool_t fSPDRemoveNoisyFlag; // Flag saying whether noisy pixels should be removed
751 : Bool_t fSPDRemoveDeadFlag; // Flag saying whether dead pixels should be removed
752 :
753 : // VertexerFast configuration
754 : Float_t fVertexerFastSmearX; // gaussian sigma for x MC vertex smearing
755 : Float_t fVertexerFastSmearY; // gaussian sigma for y MC vertex smearing
756 : Float_t fVertexerFastSmearZ; // gaussian sigma for z MC vertex smearing
757 :
758 : // PWGPP/AliAlignmentDataFilterITS configuration
759 : Bool_t fAlignFilterCosmics; // flag for cosmics case
760 : Bool_t fAlignFilterCosmicMergeTracks; // merge cosmic tracks
761 : Int_t fAlignFilterMinITSPoints; // min points per track
762 : Int_t fAlignFilterMinITSPointsMerged; // min points for merged tracks
763 : Bool_t fAlignFilterOnlyITSSATracks; // only ITS SA tracks
764 : Bool_t fAlignFilterOnlyITSTPCTracks; // only ITS+TPC tracks
765 : Bool_t fAlignFilterUseLayer[AliITSgeomTGeo::kNLayers]; // layers to use
766 : Bool_t fAlignFilterSkipExtra; // no extra cls in array
767 : Float_t fAlignFilterMaxMatchingAngle; // matching for cosmics
768 : Float_t fAlignFilterMinAngleWrtModulePlanes; // min angle track-to-sensor
769 : Float_t fAlignFilterMinPt; // min pt
770 : Float_t fAlignFilterMaxPt; // max pt
771 : Bool_t fAlignFilterFillQANtuples; // fill QA ntuples
772 :
773 : // Multiplicity reconstructor settings
774 : // cuts for flagging secondaries
775 : Float_t fMultCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD
776 : Float_t fMultCutPxDrSPDout; // max P*DR for primaries not involving any SPD
777 : Float_t fMultCutPxDz; // max P*DZ for primaries
778 : Float_t fMultCutDCArz; // max DR or DZ for primares
779 : //
780 : // cuts for flagging tracks in V0s
781 : Float_t fMultCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC
782 : Float_t fMultCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC
783 : //
784 : Float_t fMultCutMinP; // min P of V0
785 : Float_t fMultCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas
786 : Float_t fMultCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s
787 : Float_t fMultCutMinPointAngle; // min pointing angle cosine
788 : Float_t fMultCutMaxDCADauther; // max DCA of daughters at V0
789 : Float_t fMultCutMassGamma; // max gamma mass
790 : Float_t fMultCutMassGammaNSigma; // max standard deviations from 0 for gamma
791 : Float_t fMultCutMassK0; // max K0 mass difference from PGD value
792 : Float_t fMultCutMassK0NSigma; // max standard deviations for K0 mass from PDG value
793 : Float_t fMultCutChi2cGamma; // max constrained chi2 cut for gammas
794 : Float_t fMultCutChi2cK0; // max constrained chi2 cut for K0s
795 : Float_t fMultCutGammaSFromDecay; // min path*P for gammas
796 : Float_t fMultCutK0SFromDecay; // min path*P for K0s
797 : Float_t fMultCutMaxDCA; // max DCA for V0 at ESD vertex
798 : // Lorentz angle
799 : Bool_t fCorrectLorentzAngleSPD; // flag to enable correction
800 : Float_t fTanLorentzAngleHolesSPD; // angle for holes in SPD
801 : Bool_t fCorrectLorentzAngleSSD; // flag to enable correction
802 : Float_t fTanLorentzAngleHolesSSD; // tan(angle) for holes in SSD @ B = 0.5 T
803 : Float_t fTanLorentzAngleElectronsSSD; // tan(angle) for electrons in SSD @ B = 0.5 T
804 : //
805 : // Possibility of reconstructing only part of the ITS
806 : TString fOptReco; // "All" by default. It can be any
807 : // combination of "SPD" "SDD" and "SSD"
808 : // FastOr - Fired chip matching requirement.
809 : Bool_t fRemoveFastOrFromDeadRaw; // flag to remove FO if the chip has no cluster in raw (kFALSE by default)
810 : Bool_t fRemoveFastOrFromDeadMC; // flag to remove FO if the chip has no cluster in MC (kTRUE by default until the SPD will be simlated as ideal)
811 :
812 : private:
813 : AliESDV0Params * fESDV0Params; // declare the AliESDV0Params to be able to used in AliITSV0Finder
814 :
815 : AliITSRecoParam(const AliITSRecoParam & param);
816 : AliITSRecoParam & operator=(const AliITSRecoParam ¶m);
817 :
818 154 : ClassDef(AliITSRecoParam,56) // ITS reco parameters
819 : };
820 :
821 : #endif
822 :
823 :
|