Line data Source code
1 : /**************************************************************************
2 : * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 : * *
4 : * Author: The ALICE Off-line Project. *
5 : * Contributors are mentioned in the code where appropriate. *
6 : * *
7 : * Permission to use, copy, modify and distribute this software and its *
8 : * documentation strictly for non-commercial purposes is hereby granted *
9 : * without fee, provided that the above copyright notice appears in all *
10 : * copies and that both the copyright notice and this permission notice *
11 : * appear in the supporting documentation. The authors make no claims *
12 : * about the suitability of this software for any purpose. It is *
13 : * provided "as is" without express or implied warranty. *
14 : **************************************************************************/
15 :
16 : /* $Id$ */
17 :
18 : #include <stdio.h>
19 : #include <stdlib.h>
20 : #include <Riostream.h>
21 : #include <TObjArray.h>
22 : #include <TRandom.h>
23 :
24 : #include <TGeoGlobalMagField.h>
25 : #include "AliITSmodule.h"
26 : #include "AliITSMapA2.h"
27 : #include "AliITSpList.h"
28 : #include "AliITSCalibrationSSD.h"
29 : #include "AliITSsegmentationSSD.h"
30 : //#include "AliITSdcsSSD.h"
31 : #include "AliITS.h"
32 : #include "AliITShit.h"
33 : #include "AliITSdigitSSD.h"
34 : #include "AliRun.h"
35 : #include "AliMagF.h"
36 : #include "AliITSgeom.h"
37 : #include "AliITSsimulationSSD.h"
38 : #include "AliITSTableSSD.h"
39 : #include <TF1.h>
40 : #include "AliMathBase.h"
41 :
42 : using std::endl;
43 : using std::cout;
44 116 : ClassImp(AliITSsimulationSSD)
45 : ////////////////////////////////////////////////////////////////////////
46 : // //
47 : // Author: Enrico Fragiacomo //
48 : // enrico.fragiacomo@ts.infn.it //
49 : // Last revised: june 2008 //
50 : // //
51 : // AliITSsimulationSSD is the simulation of SSD. //
52 : ////////////////////////////////////////////////////////////////////////
53 :
54 : //----------------------------------------------------------------------
55 0 : AliITSsimulationSSD::AliITSsimulationSSD():AliITSsimulation(),
56 : //fDCS(0),
57 0 : fMapA2(0),
58 0 : fIonE(0.0),
59 0 : fDifConst(),
60 0 : fDriftVel(),
61 0 : fTimeResponse(NULL),
62 0 : fLorentz(kFALSE),
63 0 : fTanLorAngP(0),
64 0 : fTanLorAngN(0)
65 0 : {
66 : //default Constructor
67 : //Inputs:
68 : // none.
69 : // Outputs:
70 : // none.
71 : // Return:
72 : // A default construction AliITSsimulationSSD class
73 0 : }
74 : //----------------------------------------------------------------------
75 : AliITSsimulationSSD::AliITSsimulationSSD(AliITSDetTypeSim* dettyp):
76 1 : AliITSsimulation(dettyp),
77 : //fDCS(0),
78 1 : fMapA2(0),
79 1 : fIonE(0.0),
80 1 : fDifConst(),
81 1 : fDriftVel(),
82 1 : fTimeResponse(NULL),
83 1 : fLorentz(kFALSE),
84 1 : fTanLorAngP(0),
85 1 : fTanLorAngN(0)
86 5 : {
87 : // Constructor
88 : // Input:
89 : // AliITSDetTypeSim Pointer to the SSD dettype to be used
90 : // Outputs:
91 : // none.
92 : // Return
93 : // A standard constructed AliITSsimulationSSD class
94 :
95 3 : fTimeResponse = new TF1("ftimeresponse",".5*x*exp(1.-.5*x)");
96 1 : Init();
97 2 : }
98 : //----------------------------------------------------------------------
99 : void AliITSsimulationSSD::Init(){
100 : // Inilizer, Inilizes all of the variable as needed in a standard place.
101 : // Input:
102 : // AliITSsegmentationSSD *seg Pointer to the SSD segmentation to be used
103 : // AliITSCalibrationSSD *resp Pointer to the SSD responce class to be used
104 : // Outputs:
105 : // none.
106 : // Return
107 : // none.
108 2 : AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2);
109 1 : AliITSSimuParam* simpar = fDetType->GetSimuParam();
110 :
111 1 : SetDriftVelocity(); // use default values in .h file
112 1 : SetIonizeE(); // use default values in .h file
113 1 : SetDiffConst(); // use default values in .h file
114 3 : fpList = new AliITSpList(2,GetNStrips());
115 2 : fMapA2 = new AliITSMapA2(seg);
116 1 : SetLorentzDrift(simpar->GetSSDLorentzDrift());
117 2 : if (fLorentz) SetTanLorAngle();
118 1 : }
119 :
120 : //______________________________________________________________________
121 : Bool_t AliITSsimulationSSD::SetTanLorAngle() {
122 : // This function set the Tangent of the Lorentz angles.
123 : // output: Bool_t : kTRUE in case of success
124 : //
125 :
126 4 : if(!fDetType) {
127 0 : AliError("AliITSsimulationSPD::SetTanLorAngle: AliITSDetTypeSim* fDetType not set ");
128 0 : return kFALSE;}
129 :
130 2 : AliITSSimuParam* simpar = fDetType->GetSimuParam();
131 2 : AliMagF* fld = (AliMagF*)TGeoGlobalMagField::Instance()->GetField();
132 2 : if (!fld) AliFatal("The field is not initialized");
133 2 : Double_t bz = fld->SolenoidField();
134 :
135 2 : fTanLorAngN = TMath::Tan( simpar->LorentzAngleElectron(bz) );
136 2 : fTanLorAngP = TMath::Tan( simpar->LorentzAngleHole(bz) );
137 :
138 : return kTRUE;
139 2 : }
140 :
141 : //______________________________________________________________________
142 : AliITSsimulationSSD& AliITSsimulationSSD::operator=(
143 : const AliITSsimulationSSD &s){
144 : // Operator =
145 :
146 0 : if(this==&s) return *this;
147 :
148 : // this->fDCS = new AliITSdcsSSD(*(s.fDCS));
149 0 : this->fMapA2 = s.fMapA2;
150 0 : this->fIonE = s.fIonE;
151 0 : this->fDifConst[0] = s.fDifConst[0];
152 0 : this->fDifConst[1] = s.fDifConst[1];
153 0 : this->fDriftVel[0] = s.fDriftVel[0];
154 0 : this->fDriftVel[1] = s.fDriftVel[1];
155 0 : this->fTimeResponse = s.fTimeResponse;
156 0 : this->fLorentz = s.fLorentz;
157 0 : this->fTanLorAngP = s.fTanLorAngP;
158 0 : this->fTanLorAngN = s.fTanLorAngN;
159 0 : return *this;
160 0 : }
161 : /*
162 : //______________________________________________________________________
163 : AliITSsimulation& AliITSsimulationSSD::operator=(
164 : const AliITSsimulation &s){
165 : // Operator =
166 :
167 : if(this==&s) return *this;
168 : Error("AliITSsimulationSSD","Not allowed to make a = with "
169 : "AliITSsimulationSSD Using default creater instead");
170 :
171 : return *this;
172 : }
173 : */
174 : //______________________________________________________________________
175 : AliITSsimulationSSD::AliITSsimulationSSD(const AliITSsimulationSSD &source):
176 0 : AliITSsimulation(source),
177 0 : fMapA2(source.fMapA2),
178 0 : fIonE(source.fIonE),
179 0 : fDifConst(),
180 0 : fDriftVel(),
181 0 : fTimeResponse(source.fTimeResponse),
182 0 : fLorentz(source.fLorentz),
183 0 : fTanLorAngP(source.fTanLorAngP),
184 0 : fTanLorAngN(source.fTanLorAngN)
185 0 : {
186 : // copy constructor
187 0 : fDifConst[0] = source.fDifConst[0];
188 0 : fDifConst[1] = source.fDifConst[1];
189 0 : fDriftVel[0] = source.fDriftVel[0];
190 0 : fDriftVel[1] = source.fDriftVel[1];
191 0 : }
192 : //______________________________________________________________________
193 6 : AliITSsimulationSSD::~AliITSsimulationSSD() {
194 : // destructor
195 2 : delete fMapA2;
196 2 : delete fTimeResponse;
197 : //delete fDCS;
198 3 : }
199 : //______________________________________________________________________
200 : void AliITSsimulationSSD::InitSimulationModule(Int_t module,Int_t event){
201 : // Creates maps to build the list of tracks for each sumable digit
202 : // Inputs:
203 : // Int_t module // Module number to be simulated
204 : // Int_t event // Event number to be simulated
205 : // Outputs:
206 : // none.
207 : // Return
208 : // none.
209 :
210 0 : SetModuleNumber(module);
211 0 : SetEventNumber(event);
212 0 : fMapA2->ClearMap();
213 0 : fpList->ClearMap();
214 0 : }
215 : //______________________________________________________________________
216 : void AliITSsimulationSSD::FinishSDigitiseModule(){
217 : // Does the Sdigits to Digits work
218 : // Inputs:
219 : // none.
220 : // Outputs:
221 : // none.
222 : // Return:
223 : // none.
224 :
225 0 : FillMapFrompList(fpList); // need to check if needed here or not????
226 0 : SDigitToDigit(fModule,fpList);
227 0 : fpList->ClearMap();
228 0 : fMapA2->ClearMap();
229 0 : }
230 : //______________________________________________________________________
231 : void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t,Int_t) {
232 : // Digitizes hits for one SSD module
233 13584 : SetModuleNumber(mod->GetIndex());
234 :
235 6792 : HitsToAnalogDigits(mod,fpList);
236 6792 : SDigitToDigit(GetModuleNumber(),fpList);
237 :
238 6792 : fpList->ClearMap();
239 6792 : fMapA2->ClearMap();
240 6792 : }
241 : //______________________________________________________________________
242 : void AliITSsimulationSSD::SDigitiseModule(AliITSmodule *mod,Int_t,Int_t) {
243 : // Produces Summable/Analog digits and writes them to the SDigit tree.
244 :
245 0 : HitsToAnalogDigits(mod,fpList);
246 :
247 0 : WriteSDigits(fpList);
248 :
249 0 : fpList->ClearMap();
250 0 : fMapA2->ClearMap();
251 0 : }
252 : //______________________________________________________________________
253 : void AliITSsimulationSSD::SDigitToDigit(Int_t module,AliITSpList *pList){
254 : // Takes the pList and finishes the digitization.
255 :
256 13584 : ApplyNoise(pList,module);
257 6792 : ApplyCoupling(pList,module);
258 6792 : ApplyDeadChannels(module);
259 :
260 6792 : ChargeToSignal(module,pList);
261 6792 : }
262 : //______________________________________________________________________
263 : void AliITSsimulationSSD::HitsToAnalogDigits(AliITSmodule *mod,
264 : AliITSpList *pList){
265 : // Loops over all hits to produce Analog/floating point digits. This
266 : // is also the first task in producing standard digits.
267 : Int_t lasttrack = -2;
268 13584 : Int_t idtrack = -2;
269 6792 : Double_t x0=0.0, y0=0.0, z0=0.0;
270 6792 : Double_t x1=0.0, y1=0.0, z1=0.0;
271 6792 : Double_t de=0.0;
272 6792 : Int_t module = mod->GetIndex();
273 : Double_t tof = 0.;
274 :
275 :
276 6792 : AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2);
277 :
278 6792 : TObjArray *hits = mod->GetHits();
279 6792 : Int_t nhits = hits->GetEntriesFast();
280 13429 : if (nhits<=0) return;
281 310 : AliITSTableSSD * tav = new AliITSTableSSD(GetNStrips());
282 155 : module = mod->GetIndex();
283 236 : if ( mod->GetLayer() == 6 ) seg->SetLayer(6);
284 229 : if ( mod->GetLayer() == 5 ) seg->SetLayer(5);
285 :
286 1256 : for(Int_t i=0; i<nhits; i++) {
287 : // LineSegmentL returns 0 if the hit is entering
288 : // If hits is exiting returns positions of entering and exiting hits
289 : // Returns also energy loss
290 473 : if(GetDebug(4)){
291 0 : cout << i << " ";
292 0 : cout << mod->GetHit(i)->GetXL() << " "<<mod->GetHit(i)->GetYL();
293 0 : cout << " " << mod->GetHit(i)->GetZL();
294 0 : cout << endl;
295 0 : } // end if
296 473 : if (mod->LineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) {
297 :
298 : // Scale down dE/dx according to the hit's TOF wrt to the trigger
299 : // Necessary for pileup simulation
300 : // EF - 21/04/09
301 473 : tof = mod->GetHit(i)->GetTOF();
302 473 : tof *= 1.E+6; // convert time in microsecond
303 946 : if(tof<2.) de = de * fTimeResponse->Eval(-1.*tof+2.);
304 0 : else de = 0.;
305 : //
306 :
307 473 : HitToDigit(module, x0, y0, z0, x1, y1, z1, de,tav);
308 733 : if (lasttrack != idtrack || i==(nhits-1)) {
309 257 : GetList(idtrack,i,module,pList,tav);
310 257 : } // end if
311 473 : lasttrack=idtrack;
312 473 : } // end if
313 : } // end loop over hits
314 310 : delete tav; tav=0;
315 : return;
316 6792 : }
317 : //----------------------------------------------------------------------
318 : void AliITSsimulationSSD::HitToDigit(Int_t module, Double_t x0, Double_t y0,
319 : Double_t z0, Double_t x1, Double_t y1,
320 : Double_t z1, Double_t de,
321 : AliITSTableSSD *tav) {
322 :
323 : // hit to digit conversion
324 :
325 946 : AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2);
326 : // Turns hits in SSD module into one or more digits.
327 : //Float_t tang[2] = {0.0,0.0};
328 : //seg->Angles(tang[0], tang[1]);//stereo<<->tan(stereo)~=stereo
329 : Double_t x, y, z;
330 473 : Double_t dex=0.0, dey=0.0, dez=0.0;
331 : Double_t pairs; // pair generation energy per step.
332 473 : Double_t sigma[2] = {0.,0.};// standard deviation of the diffusion gaussian
333 473 : Double_t tdrift[2] = {0.,0.}; // time of drift
334 : Double_t w;
335 473 : Double_t inf[2], sup[2], par0[2];
336 :
337 : // Set up corrections for Lorentz drift (ExB)
338 473 : Double_t tanLorAngP = fTanLorAngP;
339 473 : Double_t tanLorAngN = fTanLorAngN;
340 473 : if(seg->GetLayer()==6) {
341 263 : tanLorAngP = -1.*fTanLorAngP;
342 263 : tanLorAngN = -1.*fTanLorAngN;
343 263 : }
344 :
345 : // Steps in the module are determined "manually" (i.e. No Geant)
346 : // NumOfSteps divide path between entering and exiting hits in steps
347 473 : Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez);
348 : // Enery loss is equally distributed among steps
349 473 : de = de/numOfSteps;
350 473 : pairs = de/GetIonizeE(); // e-h pairs generated
351 :
352 : //-----------------------------------------------------
353 : // stepping
354 : //-----------------------------------------------------
355 5721 : for(Int_t j=0; j<numOfSteps; j++) { // stepping
356 :
357 2187 : x = x0 + (j+0.5)*dex;
358 2187 : y = y0 + (j+0.5)*dey;
359 2187 : if ( y > (seg->Dy()/2+10)*1.0E-4 ) {
360 : // check if particle is within the detector
361 0 : Warning("HitToDigit",
362 : "hit out of detector y0=%e,y=%e,dey=%e,j =%d module=%d, exceed=%e",
363 0 : y0,y,dey,j,module, y-(seg->Dy()/2+10)*1.0E-4);
364 0 : return;
365 : } // end if
366 2187 : z = z0 + (j+0.5)*dez;
367 :
368 2187 : if(GetDebug(4)) cout <<"HitToDigit "<<x<<" "<<y<<" "<<z<< " "
369 0 : <<dex<<" "<<dey<<" "<<dez<<endl;
370 :
371 2187 : if(seg->GetLayer()==6) {
372 1140 : y=-y; // Lay6 module has sensor up-side-down!!!
373 1140 : }
374 :
375 : Int_t k;
376 : //---------------------------------------------------------
377 : // Pside
378 : //------------------------------------------------------------
379 : k=0;
380 :
381 : // w is the coord. perpendicular to the strips
382 : // Float_t xp=x*1.e+4,zp=z*1.e+4; // microns
383 2187 : Float_t xp=x,zp=z;
384 :
385 : // correction for the Lorentz's angle
386 2187 : if(fLorentz) {
387 2187 : Float_t deltaxp = (y+(seg->Dy()*1.0E-4)/2)*tanLorAngP;
388 2187 : xp+=deltaxp;
389 2187 : }
390 :
391 2187 : seg->GetPadTxz(xp,zp);
392 :
393 : // calculate drift time
394 : // y is the minimum path
395 2187 : tdrift[0] = (y+(seg->Dy()*1.0E-4)/2)/GetDriftVelocity(0);
396 :
397 2187 : w = xp; // P side strip number
398 :
399 4374 : if((w<(-0.5)) || (w>(GetNStrips()-0.5))) {
400 : // this check rejects hits in regions not covered by strips
401 : // 0.5 takes into account boundaries
402 0 : if(GetDebug(4)) cout << "Dead SSD region, x,z="<<x<<","<<z<<endl;
403 0 : return; // There are dead region on the SSD sensitive volume!!!
404 : } // end if
405 : // sigma is the standard deviation of the diffusion gaussian
406 2192 : if(tdrift[k]<0) return;
407 :
408 2182 : sigma[k] = TMath::Sqrt(2*GetDiffConst(k)*tdrift[k]);
409 2182 : sigma[k] /= (GetStripPitch()*1.0E-4); //units of Pitch
410 :
411 2182 : if(sigma[k]==0.0) {
412 0 : Error("HitToDigit"," sigma[%d]=0",k);
413 0 : exit(0);
414 : } // end if
415 :
416 2182 : par0[k] = pairs;
417 : // we integrate the diffusion gaussian from -3sigma to 3sigma
418 2182 : inf[k] = w - 3*sigma[k]; // 3 sigma from the gaussian average
419 2182 : sup[k] = w + 3*sigma[k]; // 3 sigma from the gaussian average
420 : // IntegrateGaussian does the actual
421 : // integration of diffusion gaussian
422 2182 : IntegrateGaussian(k, par0[k], w, sigma[k], inf[k], sup[k],tav);
423 :
424 : //------------------------------------------------------
425 : // end Pside
426 : //-------------------------------------------------------
427 :
428 : //------------------------------------------------------
429 : // Nside
430 : //-------------------------------------------------------
431 : k=1;
432 :
433 2182 : xp=x; zp=z;
434 :
435 : // correction for the Lorentz's angle
436 2182 : if(fLorentz) {
437 2182 : Float_t deltaxn = ((seg->Dy()*1.0E-4)/2-y)*tanLorAngN;
438 2182 : xp+=deltaxn;
439 2182 : }
440 :
441 :
442 2182 : seg->GetPadTxz(xp,zp);
443 :
444 2182 : tdrift[1] = ((seg->Dy()*1.0E-4)/2-y)/GetDriftVelocity(1);
445 :
446 : //tang[k]=TMath::Tan(tang[k]);
447 :
448 2182 : w = zp; // N side strip number
449 :
450 4359 : if((w<(-0.5)) || (w>(GetNStrips()-0.5))) {
451 : // this check rejects hits in regions not covered by strips
452 : // 0.5 takes into account boundaries
453 11 : if(GetDebug(4)) cout << "Dead SSD region, x,z="<<x<<","<<z<<endl;
454 11 : return; // There are dead region on the SSD sensitive volume.
455 : } // end if
456 :
457 : // sigma is the standard deviation of the diffusion gaussian
458 2179 : if(tdrift[k]<0) return;
459 :
460 2163 : sigma[k] = TMath::Sqrt(2*GetDiffConst(k)*tdrift[k]);
461 2163 : sigma[k] /= (GetStripPitch()*1.0E-4); //units of Pitch
462 :
463 2163 : if(sigma[k]==0.0) {
464 0 : Error("HitToDigit"," sigma[%d]=0",k);
465 0 : exit(0);
466 : } // end if
467 :
468 2163 : par0[k] = pairs;
469 : // we integrate the diffusion gaussian from -3sigma to 3sigma
470 2163 : inf[k] = w - 3*sigma[k]; // 3 sigma from the gaussian average
471 2163 : sup[k] = w + 3*sigma[k]; // 3 sigma from the gaussian average
472 : // IntegrateGaussian does the actual
473 : // integration of diffusion gaussian
474 2163 : IntegrateGaussian(k, par0[k], w, sigma[k], inf[k], sup[k],tav);
475 :
476 : //-------------------------------------------------
477 : // end Nside
478 : //-------------------------------------------------
479 :
480 :
481 4350 : } // end stepping
482 922 : }
483 :
484 : //______________________________________________________________________
485 : void AliITSsimulationSSD::ApplyNoise(AliITSpList *pList,Int_t module){
486 : // Apply Noise.
487 : Int_t ix;
488 : Double_t signal,noise;
489 13584 : AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module);
490 :
491 : // Pside
492 10446096 : for(ix=0;ix<GetNStrips();ix++){ // loop over strips
493 :
494 : // noise is gaussian
495 5216256 : noise = (Double_t) gRandom->Gaus(0,res->GetNoiseP(ix));
496 :
497 : // need to calibrate noise
498 : // NOTE. noise from the calibration database comes uncalibrated,
499 : // it needs to be calibrated in order to be added
500 : // to the signal. It will be decalibrated later on together with the noise
501 5216256 : noise *= (Double_t) res->GetGainP(ix);
502 :
503 : // noise comes in ADC channels from the calibration database
504 : // It needs to be converted back to electronVolts
505 5216256 : noise /= res->GetSSDDEvToADC(1.);
506 :
507 : // Finally, noise is added to the signal
508 5216256 : signal = noise + fMapA2->GetSignal(0,ix);//get signal from map
509 5216256 : fMapA2->SetHit(0,ix,signal); // give back signal to map
510 7703635 : if(signal>0.0) pList->AddNoise(0,ix,module,noise);
511 : } // loop over strip
512 :
513 : // Nside
514 10446096 : for(ix=0;ix<GetNStrips();ix++){ // loop over strips
515 5216256 : noise = (Double_t) gRandom->Gaus(0,res->GetNoiseN(ix));// give noise to signal
516 5216256 : noise *= (Double_t) res->GetGainN(ix);
517 5216256 : noise /= res->GetSSDDEvToADC(1.);
518 5216256 : signal = noise + fMapA2->GetSignal(1,ix);//get signal from map
519 5216256 : fMapA2->SetHit(1,ix,signal); // give back signal to map
520 7703561 : if(signal>0.0) pList->AddNoise(1,ix,module,noise);
521 : } // loop over strip
522 :
523 6792 : }
524 : //______________________________________________________________________
525 : void AliITSsimulationSSD::ApplyCoupling(AliITSpList *pList,Int_t module) {
526 : // Apply the effect of electronic coupling between channels
527 : Int_t ix;
528 : Double_t signal=0;
529 : //AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module);
530 13584 : AliITSSimuParam* res = fDetType->GetSimuParam();
531 :
532 6792 : Double_t *contrLeft = new Double_t[GetNStrips()];
533 6792 : Double_t *contrRight = new Double_t[GetNStrips()];
534 :
535 : // P side coupling
536 10446096 : for(ix=0;ix<GetNStrips();ix++){
537 10425720 : if(ix>0) contrLeft[ix] = fMapA2->GetSignal(0,ix-1)*res->GetSSDCouplingPL();
538 6792 : else contrLeft[ix] = 0.0;
539 10425720 : if(ix<(GetNStrips()-1)) contrRight[ix] = fMapA2->GetSignal(0,ix+1)*res->GetSSDCouplingPR();
540 6792 : else contrRight[ix] = 0.0;
541 : } // loop over strips
542 :
543 10446096 : for(ix=0;ix<GetNStrips();ix++){
544 5216256 : signal = contrLeft[ix] + contrRight[ix] - res->GetSSDCouplingPL() * fMapA2->GetSignal(0,ix)
545 5216256 : - res->GetSSDCouplingPR() * fMapA2->GetSignal(0,ix);
546 5216256 : fMapA2->AddSignal(0,ix,signal);
547 7711341 : if(signal>0.0) pList->AddNoise(0,ix,module,signal);
548 : } // loop over strips
549 :
550 : // N side coupling
551 10446096 : for(ix=0;ix<GetNStrips();ix++){
552 10425720 : if(ix>0) contrLeft[ix] = fMapA2->GetSignal(1,ix-1)*res->GetSSDCouplingNL();
553 6792 : else contrLeft[ix] = 0.0;
554 10425720 : if(ix<(GetNStrips()-1)) contrRight[ix] = fMapA2->GetSignal(1,ix+1)*res->GetSSDCouplingNR();
555 6792 : else contrRight[ix] = 0.0;
556 : } // loop over strips
557 :
558 10446096 : for(ix=0;ix<GetNStrips();ix++){
559 5216256 : signal = contrLeft[ix] + contrRight[ix] - res->GetSSDCouplingNL() * fMapA2->GetSignal(0,ix)
560 5216256 : - res->GetSSDCouplingNR() * fMapA2->GetSignal(0,ix);
561 5216256 : fMapA2->AddSignal(1,ix,signal);
562 7742833 : if(signal>0.0) pList->AddNoise(1,ix,module,signal);
563 : } // loop over strips
564 :
565 :
566 13584 : delete [] contrLeft;
567 13584 : delete [] contrRight;
568 6792 : }
569 :
570 : //______________________________________________________________________
571 : void AliITSsimulationSSD::ApplyDeadChannels(Int_t module) {
572 : // Kill dead channels setting gain to zero
573 :
574 13584 : AliITSCalibrationSSD* res = (AliITSCalibrationSSD*)GetCalibrationModel(module);
575 :
576 10446096 : for(Int_t i=0;i<GetNStrips();i++){
577 :
578 5543396 : if(res->IsPChannelBad(i)) res->SetGainP(i,0.0);
579 5535644 : if(res->IsNChannelBad(i)) res->SetGainN(i,0.0);
580 :
581 : } // loop over strips
582 :
583 6792 : }
584 :
585 : //______________________________________________________________________
586 : Float_t AliITSsimulationSSD::F(Float_t av, Float_t x, Float_t s) {
587 : // Computes the integral of a gaussian using Error Function
588 13752 : Float_t sqrt2 = TMath::Sqrt(2.0);
589 6876 : Float_t sigm2 = sqrt2*s;
590 : Float_t integral;
591 :
592 6876 : integral = 0.5 * AliMathBase::ErfFast( (x - av) / sigm2);
593 6876 : return integral;
594 : }
595 : //______________________________________________________________________
596 : void AliITSsimulationSSD::IntegrateGaussian(Int_t k,Double_t par, Double_t w,
597 : Double_t sigma,
598 : Double_t inf, Double_t sup,
599 : AliITSTableSSD *tav) {
600 : // integrate the diffusion gaussian
601 : // remind: inf and sup are w-3sigma and w+3sigma
602 : // we could define them here instead of passing them
603 : // this way we are free to introduce asimmetry
604 :
605 : Double_t a=0.0, b=0.0;
606 : Double_t dXCharge1 = 0.0, dXCharge2 = 0.0;
607 : // dXCharge1 and 2 are the charge to two neighbouring strips
608 : // Watch that we only involve at least two strips
609 : // Numbers greater than 2 of strips in a cluster depend on
610 : // geometry of the track and delta rays, not charge diffusion!
611 :
612 8690 : Double_t strip = TMath::Floor(w); // closest strip on the left
613 :
614 4345 : if ( TMath::Abs((strip - w)) < 0.5) {
615 : // gaussian mean is closer to strip on the left
616 : a = inf; // integration starting point
617 2203 : if((strip+0.5)<=sup) {
618 : // this means that the tail of the gaussian goes beyond
619 : // the middle point between strips ---> part of the signal
620 : // is given to the strip on the right
621 : b = strip + 0.5; // integration stopping point
622 919 : dXCharge1 = F( w, b, sigma) - F(w, a, sigma);
623 919 : dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma);
624 919 : }else {
625 : // this means that all the charge is given to the strip on the left
626 : b = sup;
627 : dXCharge1 = 0.9973; // gaussian integral at 3 sigmas
628 : dXCharge2 = 0.0;
629 : } // end if
630 2203 : dXCharge1 = par * dXCharge1;// normalize by mean of number of carriers
631 2203 : dXCharge2 = par * dXCharge2;
632 :
633 : // for the time being, signal is the charge
634 : // in ChargeToSignal signal is converted in ADC channel
635 2203 : fMapA2->AddSignal(k,(Int_t)strip,dXCharge1);
636 2203 : tav->Add(k,(Int_t)strip);
637 2203 : if(((Int_t) strip) < (GetNStrips()-1)) {
638 : // strip doesn't have to be the last (remind: last=GetNStrips()-1)
639 : // otherwise part of the charge is lost
640 2203 : fMapA2->AddSignal(k,((Int_t)strip+1),dXCharge2);
641 2203 : tav->Add(k,((Int_t)(strip+1)));
642 2203 : } // end if
643 : }else{
644 : // gaussian mean is closer to strip on the right
645 2142 : strip++; // move to strip on the rigth
646 : b = sup; // now you know where to stop integrating
647 2142 : if((strip-0.5)>=inf) {
648 : // tail of diffusion gaussian on the left goes left of
649 : // middle point between strips
650 : a = strip - 0.5; // integration starting point
651 800 : dXCharge1 = F(w, b, sigma) - F(w, a, sigma);
652 800 : dXCharge2 = F(w, a, sigma) - F(w, inf, sigma);
653 800 : }else {
654 : a = inf;
655 : dXCharge1 = 0.9973; // gaussian integral at 3 sigmas
656 : dXCharge2 = 0.0;
657 : } // end if
658 2142 : dXCharge1 = par * dXCharge1; // normalize by means of carriers
659 2142 : dXCharge2 = par * dXCharge2;
660 : // for the time being, signal is the charge
661 : // in ChargeToSignal signal is converted in ADC channel
662 2142 : fMapA2->AddSignal(k,(Int_t)strip,dXCharge1);
663 2142 : tav->Add(k,(Int_t)strip);
664 2142 : if(((Int_t) strip) > 0) {
665 : // strip doesn't have to be the first
666 : // otherwise part of the charge is lost
667 2142 : fMapA2->AddSignal(k,((Int_t)strip-1),dXCharge2);
668 2142 : tav->Add(k,((Int_t)(strip-1)));
669 2142 : } // end if
670 : } // end if
671 4345 : }
672 : //______________________________________________________________________
673 : Int_t AliITSsimulationSSD::NumOfSteps(Double_t x, Double_t y, Double_t z,
674 : Double_t &dex,Double_t &dey,
675 : Double_t &dez){
676 : // number of steps
677 : // it also returns steps for each coord
678 : //AliITSsegmentationSSD *seg = new AliITSsegmentationSSD();
679 :
680 : Double_t step = 25E-4;
681 : //step = (Double_t) seg->GetStepSize(); // step size (cm)
682 946 : Int_t numOfSteps = (Int_t) (TMath::Sqrt(x*x+y*y+z*z)/step);
683 :
684 473 : if (numOfSteps < 1) numOfSteps = 1; // one step, at least
685 : //numOfSteps=1;
686 :
687 : // we could condition the stepping depending on the incident angle
688 : // of the track
689 473 : dex = x/numOfSteps;
690 473 : dey = y/numOfSteps;
691 473 : dez = z/numOfSteps;
692 :
693 473 : return numOfSteps;
694 : }
695 : //----------------------------------------------------------------------
696 : void AliITSsimulationSSD::GetList(Int_t label,Int_t hit,Int_t mod,
697 : AliITSpList *pList,AliITSTableSSD *tav) {
698 : // loop over nonzero digits
699 : Int_t ix,i;
700 : Double_t signal=0.;
701 :
702 1799 : for(Int_t k=0; k<2; k++) {
703 514 : ix=tav->Use(k);
704 3081 : while(ix>-1){
705 1162 : signal = fMapA2->GetSignal(k,ix);
706 1162 : if(signal==0.0) {
707 271 : ix=tav->Use(k);
708 271 : continue;
709 : } // end if signal==0.0
710 : // check the signal magnitude
711 7302 : for(i=0;i<pList->GetNSignals(k,ix);i++){
712 2760 : signal -= pList->GetTSignal(k,ix,i);
713 : } // end for i
714 : // compare the new signal with already existing list
715 1755 : if(signal>0)pList->AddSignal(k,ix,label,hit,mod,signal);
716 891 : ix=tav->Use(k);
717 : } // end of loop on strips
718 : } // end of loop on P/N side
719 257 : tav->Clear();
720 257 : }
721 : //----------------------------------------------------------------------
722 : void AliITSsimulationSSD::ChargeToSignal(Int_t module,const AliITSpList *pList) {
723 : // charge to signal
724 13587 : static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
725 : Float_t threshold = 0.;
726 6792 : Int_t size = AliITSdigitSSD::GetNTracks();
727 6792 : Int_t * digits = new Int_t[size];
728 6792 : Int_t * tracks = new Int_t[size];
729 6792 : Int_t * hits = new Int_t[size];
730 : Int_t j1;
731 6792 : Float_t charges[3] = {0.0,0.0,0.0};
732 : Float_t signal;
733 6792 : AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module);
734 6792 : AliITSSimuParam* simpar = fDetType->GetSimuParam();
735 :
736 40752 : for(Int_t k=0;k<2;k++){ // both sides (0=Pside, 1=Nside)
737 20892192 : for(Int_t ix=0;ix<GetNStrips();ix++){ // loop over strips
738 :
739 : // if strip is dead -> gain=0
740 30970396 : if( ((k==0)&&(res->GetGainP(ix)==0)) || ((k==1)&&(res->GetGainN(ix)==0))) continue;
741 :
742 9785984 : signal = fMapA2->GetSignal(k,ix);
743 : // signal has to be uncalibrated
744 : // In real life, gains are supposed to be calculated from calibration runs,
745 : // stored in the calibration DB and used in the reconstruction
746 : // (see AliITSClusterFinderSSD.cxx)
747 14675100 : if(k==0) signal /= res->GetGainP(ix);
748 4896868 : else signal /= res->GetGainN(ix);
749 :
750 : // signal is converted in unit of ADC
751 9785984 : signal = res->GetSSDDEvToADC(signal);
752 9785984 : if(signal>4095.) signal = 4095.;//if exceeding, accumulate last one
753 :
754 : // threshold for zero suppression is set on the basis of the noise
755 : // A good value is 3*sigma_noise
756 14675100 : if(k==0) threshold = res->GetNoiseP(ix);
757 4896868 : else threshold = res->GetNoiseN(ix);
758 :
759 9785984 : threshold *= simpar->GetSSDZSThreshold(); // threshold at 3 sigma noise
760 :
761 9785984 : if(signal < threshold) continue;
762 : //cout<<signal<<" "<<threshold<<endl;
763 :
764 12465 : digits[0] = k;
765 12465 : digits[1] = ix;
766 12465 : digits[2] = TMath::Nint(signal);
767 398880 : for(j1=0;j1<size;j1++)if(j1<pList->GetNEntries()){
768 : // only three in digit.
769 124650 : tracks[j1] = pList->GetTrack(k,ix,j1);
770 124650 : hits[j1] = pList->GetHit(k,ix,j1);
771 124650 : }else{
772 0 : tracks[j1] = -3;
773 0 : hits[j1] = -1;
774 : } // end for j1
775 : // finally add digit
776 12465 : aliITS->AddSimDigit(2,0,digits,tracks,hits,charges);
777 12465 : } // end for ix
778 : } // end for k
779 13584 : delete [] digits;
780 13584 : delete [] tracks;
781 13584 : delete [] hits;
782 6792 : }
783 : //______________________________________________________________________
784 : void AliITSsimulationSSD::WriteSDigits(AliITSpList *pList){
785 : // Fills the Summable digits Tree
786 0 : Int_t i,ni,j,nj;
787 0 : static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
788 :
789 0 : pList->GetMaxMapIndex(ni,nj);
790 0 : for(i=0;i<ni;i++)for(j=0;j<nj;j++){
791 0 : if(pList->GetSignalOnly(i,j)>0.0){
792 0 : aliITS->AddSumDigit(*(pList->GetpListItem(i,j)));
793 0 : if(GetDebug(4)) cout << "pListSSD: "<<*(pList->GetpListItem(i,j))
794 0 : << endl;
795 : } // end if
796 : } // end for i,j
797 : return;
798 0 : }
799 : //______________________________________________________________________
800 : void AliITSsimulationSSD::FillMapFrompList(AliITSpList *pList){
801 : // Fills fMap2A from the pList of Summable digits
802 : Int_t k,ix;
803 :
804 0 : for(k=0;k<2;k++)for(ix=0;ix<GetNStrips();ix++)
805 0 : fMapA2->AddSignal(k,ix,pList->GetSignal(k,ix));
806 : return;
807 0 : }
808 : //______________________________________________________________________
809 : void AliITSsimulationSSD::Print(ostream *os){
810 : //Standard output format for this class
811 :
812 : //AliITSsimulation::Print(os);
813 0 : *os << fIonE <<",";
814 0 : *os << fDifConst[0] <<","<< fDifConst[1] <<",";
815 0 : *os << fDriftVel[0] <<","<< fDriftVel[1];
816 : //*os <<","; fDCS->Print(os);
817 : //*os <<","; fMapA2->Print(os);
818 0 : }
819 : //______________________________________________________________________
820 : void AliITSsimulationSSD::Read(istream *is){
821 : // Standard output streaming function.
822 :
823 : //AliITSsimulation::Read(is);
824 0 : *is >> fIonE;
825 0 : *is >> fDifConst[0] >> fDifConst[1];
826 0 : *is >> fDriftVel[0] >> fDriftVel[1];
827 : //fDCS->Read(is);
828 : //fMapA2->Read(is);
829 0 : }
830 : //______________________________________________________________________
831 : ostream &operator<<(ostream &os,AliITSsimulationSSD &source){
832 : // Standard output streaming function.
833 :
834 0 : source.Print(&os);
835 0 : return os;
836 : }
837 : //______________________________________________________________________
838 : istream &operator>>(istream &os,AliITSsimulationSSD &source){
839 : // Standard output streaming function.
840 :
841 0 : source.Read(&os);
842 0 : return os;
843 : }
844 : //______________________________________________________________________
845 :
846 :
847 :
|