Line data Source code
1 : #ifndef ALIMUONRAWCLUSTER_H
2 : #define ALIMUONRAWCLUSTER_H
3 :
4 : /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
5 : * See cxx source for full Copyright notice */
6 :
7 : /* $Id$ */
8 : // Revision of includes 07/05/2004
9 :
10 : /// \ingroup base
11 : /// \class AliMUONRawCluster
12 : /// \brief MUON raw cluster
13 : ///
14 : /// Class for the MUON RecPoint
15 : /// It contains the properties of the physics cluters found in the tracking chambers
16 : /// RawCluster contains also the information from the both cathode of the chambers.
17 :
18 :
19 : #include "AliMUONVCluster.h"
20 : #include <TMath.h> // because of inline funtion GetRadius
21 : #include <TArrayF.h>
22 :
23 0 : class AliMUONRawCluster : public AliMUONVCluster {
24 :
25 : public:
26 : AliMUONRawCluster();
27 : virtual ~AliMUONRawCluster();
28 :
29 : /// Clear method (used by TClonesArray)
30 0 : virtual void Clear(Option_t* = "") {}
31 :
32 : /// Create a copy of the current cluster
33 0 : virtual AliMUONRawCluster* Clone(const char* = "") const {return new AliMUONRawCluster(*this);}
34 :
35 : /// Set coordinates (cm)
36 0 : virtual void SetXYZ(Double_t x, Double_t y, Double_t z) {fX[0] = x; fY[0] = y; fZ[0] = z;}
37 : /// Return coordinate X (cm)
38 0 : virtual Double_t GetX() const {return fX[0];}
39 : /// Return coordinate Y (cm)
40 0 : virtual Double_t GetY() const {return fY[0];}
41 : /// Return coordinate Z (cm)
42 0 : virtual Double_t GetZ() const {return fZ[0];}
43 :
44 : /// Set resolution (cm) on coordinates (X,Y)
45 0 : virtual void SetErrXY(Double_t errX, Double_t errY) {fErrXY[0] = errX; fErrXY[1] = errY;}
46 : /// Return resolution (cm) on coordinate X
47 0 : virtual Double_t GetErrX() const {return fErrXY[0];}
48 : /// Return resolution**2 (cm**2) on coordinate X
49 0 : virtual Double_t GetErrX2() const {return fErrXY[0] * fErrXY[0];}
50 : /// Return resolution (cm) on coordinate Y
51 0 : virtual Double_t GetErrY() const {return fErrXY[1];}
52 : /// Return resolution**2 (cm**2) on coordinate Y
53 0 : virtual Double_t GetErrY2() const {return fErrXY[1] * fErrXY[1];}
54 :
55 : /// Set the cluster charge
56 0 : virtual void SetCharge(Double_t q) {fQ[0] = q;}
57 : /// Set the cluster charge
58 0 : virtual Double_t GetCharge() const {return fQ[0];}
59 :
60 : /// Return chamber Id
61 0 : virtual Int_t GetChamberId() const {return fDetElemId/100 - 1;}
62 : /// Set detection element Id
63 0 : void SetDetElemId(Int_t id) {fDetElemId = id;}
64 : /// Return detection element Id
65 0 : virtual Int_t GetDetElemId() const {return fDetElemId;}
66 :
67 : virtual void SetDigitsId(Int_t nDigits, const UInt_t *digitsId);
68 : /// Add a digit Id to the array of associated digits
69 0 : virtual void AddDigitId(UInt_t id) {fIndexMap[fMultiplicity[0]++][0] = id;}
70 :
71 : /// Return number of associated digits
72 0 : virtual Int_t GetNDigits() const {return fMultiplicity[0];}
73 : /// Return Id of digits i
74 0 : virtual UInt_t GetDigitId(Int_t i) const {return (i < fMultiplicity[0] && i < 50) ? (UInt_t)fIndexMap[i][0] : 0;}
75 :
76 : /// Set chi2 of cluster
77 0 : virtual void SetChi2( Double_t chi2) {fChi2[0] = chi2;}
78 : /// Return chi2 of cluster
79 0 : virtual Double_t GetChi2() const {return fChi2[0];}
80 :
81 : /// Set the corresponding MC track number
82 0 : virtual void SetMCLabel(Int_t label) {SetTrack(0, label);}
83 : /// Return the corresponding MC track number
84 0 : virtual Int_t GetMCLabel() const {return GetTrack(0);}
85 :
86 : /// Return radius
87 0 : Float_t GetRadius(Int_t i) const {return TMath::Sqrt(fX[i]*fX[i]+fY[i]*fY[i]);}
88 : /// Return true as the function Compare() is implemented
89 0 : Bool_t IsSortable() const {return kTRUE;}
90 : Int_t Compare(const TObject *obj) const;
91 : Int_t PhysicsContribution() const;
92 : virtual void Print(Option_t* opt="") const;
93 : static Int_t BinarySearch(Float_t r, TArrayF ccord, Int_t from, Int_t upto);
94 : static void SortMin(Int_t *idx,Float_t *xdarray, Float_t *xarray, Float_t *yarray, Float_t *qarray,Int_t ntr);
95 : void DumpIndex();
96 :
97 : Int_t AddCharge(Int_t i, Float_t Q);
98 : Int_t AddX(Int_t i, Float_t X);
99 : Int_t AddY(Int_t i, Float_t Y);
100 : Int_t AddZ(Int_t i, Float_t Z);
101 :
102 : Float_t GetCharge(Int_t i) const;
103 : Float_t GetX(Int_t i) const;
104 : Float_t GetY(Int_t i) const;
105 : Float_t GetZ(Int_t i) const;
106 : Int_t GetTrack(Int_t i=0) const;
107 : Float_t GetPeakSignal(Int_t i=0) const;
108 : Int_t GetMultiplicity(Int_t i=0) const;
109 : Int_t GetClusterType() const;
110 : Int_t GetGhost() const;
111 : Int_t GetNcluster(Int_t i=0) const;
112 : Float_t GetChi2(Int_t i) const;
113 : Int_t GetIndex(Int_t i, Int_t j) const;
114 : Int_t GetOffset(Int_t i, Int_t j) const;
115 : Float_t GetContrib(Int_t i, Int_t j) const;
116 : Int_t GetPhysics(Int_t i) const;
117 :
118 : Int_t SetCharge(Int_t i, Float_t Q);
119 : Int_t SetX(Int_t i, Float_t X);
120 : Int_t SetY(Int_t i, Float_t Y);
121 : Int_t SetZ(Int_t i, Float_t Z);
122 : Int_t SetTrack(Int_t i, Int_t track);
123 : Int_t SetPeakSignal(Int_t i, Float_t peaksignal);
124 : Int_t SetMultiplicity(Int_t i, Int_t mul);
125 : Int_t SetClusterType(Int_t type);
126 : Int_t SetGhost(Int_t ghost);
127 : Int_t SetNcluster(Int_t i, Int_t ncluster);
128 : Int_t SetChi2(Int_t i, Float_t chi2);
129 : void SetIndex(Int_t i, Int_t j, Int_t index);
130 : void SetOffset(Int_t i, Int_t j, Int_t offset);
131 : void SetContrib(Int_t i, Int_t j, Float_t contrib);
132 : void SetPhysics(Int_t i, Int_t physics);
133 :
134 : private:
135 : Int_t fIndexMap[50][2]; ///< Indices of digits
136 : Int_t fOffsetMap[50][2]; ///< Emmanuel special
137 : Float_t fContMap[50][2]; ///< Contribution from digit
138 : Int_t fPhysicsMap[50]; ///< Distinguish signal and background contr.
139 :
140 : Float_t fQ[2] ; ///< Q of cluster (in ADC counts)
141 : Float_t fX[2] ; ///< X of cluster
142 : Float_t fY[2] ; ///< Y of cluster
143 : Float_t fZ[2] ; ///< Z of cluster
144 : Int_t fTracks[3]; ///< Labels of overlapped tracks
145 : Float_t fPeakSignal[2]; ///< Peak signal
146 : Int_t fMultiplicity[2]; ///< Cluster multiplicity
147 : Int_t fClusterType; ///< Cluster type
148 : Int_t fGhost; ///< Ghost info
149 : // 0 if not a ghost or ghost problem solved
150 : // >0 if ghost problem remains because
151 : // 1 both (true and ghost) satify
152 : // charge chi2 compatibility
153 : // 2 none give satisfactory chi2
154 : Int_t fNcluster[2]; ///< Number of clusters
155 : Float_t fChi2[2]; ///< Chi**2 of fit
156 : Int_t fDetElemId; ///< ID number of the detection element (slat) on which the cluster is found.
157 : Float_t fErrXY[2]; ///< coordinate errors
158 :
159 18 : ClassDef(AliMUONRawCluster,3) //Cluster class for MUON
160 : };
161 :
162 : // inline functions
163 :
164 : /// Return Indices of digits
165 : inline Int_t AliMUONRawCluster::GetIndex(Int_t i, Int_t j) const
166 0 : { return fIndexMap[i][j]; }
167 :
168 : /// Return Emmanuel special offset map
169 : inline Int_t AliMUONRawCluster::GetOffset(Int_t i, Int_t j) const
170 0 : { return fOffsetMap[i][j]; }
171 :
172 : /// Return Contribution from digit
173 : inline Float_t AliMUONRawCluster::GetContrib(Int_t i, Int_t j) const
174 0 : { return fContMap[i][j]; }
175 :
176 : /// Return Distinguish signal and background contr.
177 : inline Int_t AliMUONRawCluster::GetPhysics(Int_t i) const
178 0 : { return fPhysicsMap[i]; }
179 :
180 : /// Set Indices of digits
181 : inline void AliMUONRawCluster::SetIndex(Int_t i, Int_t j, Int_t index)
182 0 : { fIndexMap[i][j] = index; }
183 :
184 : /// Set Emmanuel special offset map
185 : inline void AliMUONRawCluster::SetOffset(Int_t i, Int_t j, Int_t offset)
186 0 : { fOffsetMap[i][j] = offset; }
187 :
188 : /// Set Contribution from digit
189 : inline void AliMUONRawCluster::SetContrib(Int_t i, Int_t j, Float_t contrib)
190 0 : { fContMap[i][j] = contrib; }
191 :
192 : /// Set Distinguish signal and background contr.
193 : inline void AliMUONRawCluster::SetPhysics(Int_t i, Int_t physics)
194 0 : { fPhysicsMap[i] = physics; }
195 :
196 :
197 : #endif
198 :
|