LCOV - code coverage report
Current view: top level - MUON/MUONbase - AliMUONRecoParam.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 56 112 50.0 %
Date: 2016-06-14 17:26:59 Functions: 57 116 49.1 %

          Line data    Source code
       1             : #ifndef ALIMUONRECOPARAM_H
       2             : #define ALIMUONRECOPARAM_H
       3             : /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
       4             : * See cxx source for full Copyright notice                               */
       5             : 
       6             : // $Id$
       7             : 
       8             : /// \ingroup rec
       9             : /// \class AliMUONRecoParam
      10             : /// \brief Class with MUON reconstruction parameters
      11             : ///
      12             : //  Author: Philippe Pillot
      13             : 
      14             : #include "AliDetectorRecoParam.h"
      15             : #include "TString.h"
      16             : #include <TMath.h>
      17             : 
      18           0 : class AliMUONRecoParam : public AliDetectorRecoParam
      19             : {
      20             :  public: 
      21             :   AliMUONRecoParam();
      22             :   virtual ~AliMUONRecoParam();
      23             :   
      24             :   static AliMUONRecoParam *GetLowFluxParam();
      25             :   static AliMUONRecoParam *GetHighFluxParam();
      26             :   static AliMUONRecoParam *GetCosmicParam();
      27             :   static AliMUONRecoParam *GetCalibrationParam();
      28             :   
      29             :   /// set the clustering (pre-clustering) mode
      30           0 :   void      SetClusteringMode(Option_t* mode) {fClusteringMode = mode; fClusteringMode.ToUpper();}
      31             :   /// get the clustering (pre-clustering) mode
      32           8 :   Option_t* GetClusteringMode() const {return fClusteringMode.Data();}
      33             :   
      34             :   /// Get the (truncated) average of sigmas of pedestal measurements, i.e. noise, of pads
      35           0 :   Double_t AverageNoisePadCharge() const { return fAverageNoisePadCharge; }
      36             :   /// Set the average of sigmas of pedestal measurements, i.e. noise, of pads
      37          12 :   void AverageNoisePadCharge(Double_t noise) { fAverageNoisePadCharge = noise; }
      38             :   
      39             :   /// Get the lowest charge we allow for pads
      40         576 :   Double_t LowestPadCharge() const { return fChargeSigmaCut*fAverageNoisePadCharge; }
      41             : 
      42             :   /// Get the cut applied to cut on cluster charge (the charge is cut if below fClusterChargeCut*LowestPadCharge())
      43         288 :   Double_t ClusterChargeCut() const { return fClusterChargeCut; }
      44             :   /// Set the cut applied to cut on cluster charge (the charge is cut if below fClusterChargeCut*LowestPadCharge())
      45          12 :   void ClusterChargeCut(Double_t n) { fClusterChargeCut=n; }
      46             :   
      47             :   /// Get the lowest possible cluster charge
      48         288 :   Double_t LowestClusterCharge() const { return ClusterChargeCut()*LowestPadCharge(); }
      49             :      
      50             :   /// set the tracking mode
      51           0 :   void      SetTrackingMode(Option_t* mode) {fTrackingMode = mode; fTrackingMode.ToUpper();}
      52             :   /// get the tracking mode
      53           4 :   Option_t* GetTrackingMode() const {return fTrackingMode.Data();}
      54             :   
      55             :   /// switch on/off the combined cluster/track reconstruction
      56           0 :   void      CombineClusterTrackReco(Bool_t flag) {fCombinedClusterTrackReco = flag;}
      57             :   /// return kTRUE/kFALSE if the combined cluster/track reconstruction is on/off
      58         220 :   Bool_t    CombineClusterTrackReco() const {return fCombinedClusterTrackReco;}
      59             :   
      60             :   /// save all cluster info (including pads) in ESD, for the given percentage of events
      61           0 :   void      SaveFullClusterInESD(Bool_t flag, Double_t percentOfEvent = 100.) {fSaveFullClusterInESD = flag;
      62           0 :                                  fPercentOfFullClusterInESD = (fSaveFullClusterInESD) ? percentOfEvent : 0.;}
      63             :   /// return kTRUE/kFALSE depending on whether we save all cluster info in ESD or not
      64          16 :   Bool_t    SaveFullClusterInESD() const {return fSaveFullClusterInESD;}
      65             :   /// return the percentage of events for which all cluster info are stored in ESD
      66          16 :   Double_t  GetPercentOfFullClusterInESD() const {return fPercentOfFullClusterInESD;}
      67             :   
      68             :   /// set the minimum value (GeV/c) of momentum in bending plane
      69           0 :   void     SetMinBendingMomentum(Double_t val) {fMinBendingMomentum = val;}
      70             :   /// return the minimum value (GeV/c) of momentum in bending plane
      71         724 :   Double_t GetMinBendingMomentum() const {return fMinBendingMomentum;}
      72             :   /// set the maximum value (GeV/c) of momentum in bending plane
      73           0 :   void     SetMaxBendingMomentum(Double_t val) {fMaxBendingMomentum = val;}
      74             :   /// return the maximum value (GeV/c) of momentum in bending plane
      75           0 :   Double_t GetMaxBendingMomentum() const {return fMaxBendingMomentum;}
      76             :   
      77             :   /// set the maximum value of the non bending slope
      78           0 :   void     SetMaxNonBendingSlope(Double_t val) {fMaxNonBendingSlope = val;}
      79             :   /// return the maximum value of the non bending slope
      80           0 :   Double_t GetMaxNonBendingSlope() const {return fMaxNonBendingSlope;}
      81             :   /// set the maximum value of the bending slope
      82           0 :   void     SetMaxBendingSlope(Double_t val) {fMaxBendingSlope = val;}
      83             :   /// return the maximum value of the bending slope
      84           0 :   Double_t GetMaxBendingSlope() const {return fMaxBendingSlope;}
      85             :   
      86             :   /// switch on/off the track selection according to their slope (instead of their impact parameter)
      87           0 :   void     SelectOnTrackSlope(Bool_t flag) {fSelectTrackOnSlope = flag;}
      88             :   /// return kTRUE/kFALSE if tracks are selected according to their slope/impact parameter
      89         548 :   Bool_t   SelectOnTrackSlope() const {return fSelectTrackOnSlope;}
      90             :   
      91             :   /// set the vertex dispersion (cm) in non bending plane
      92           0 :   void     SetNonBendingVertexDispersion(Double_t val) {fNonBendingVertexDispersion = val;} 
      93             :   /// return the vertex dispersion (cm) in non bending plane
      94         548 :   Double_t GetNonBendingVertexDispersion() const {return fNonBendingVertexDispersion;}
      95             :   /// set the vertex dispersion (cm) in bending plane
      96           0 :   void     SetBendingVertexDispersion(Double_t val) {fBendingVertexDispersion = val;} 
      97             :   /// return the vertex dispersion (cm) in bending plane
      98         220 :   Double_t GetBendingVertexDispersion() const {return fBendingVertexDispersion;}
      99             :   
     100             :   /// set the maximum distance to the track to search for compatible cluster(s) in non bending direction
     101           0 :   void     SetMaxNonBendingDistanceToTrack(Double_t val) {fMaxNonBendingDistanceToTrack = val;} 
     102             :   /// return the maximum distance to the track to search for compatible cluster(s) in non bending direction
     103        1288 :   Double_t GetMaxNonBendingDistanceToTrack() const {return fMaxNonBendingDistanceToTrack;}
     104             :   /// set the maximum distance to the track to search for compatible cluster(s) in bending direction
     105           0 :   void     SetMaxBendingDistanceToTrack(Double_t val) {fMaxBendingDistanceToTrack = val;} 
     106             :   /// return the maximum distance to the track to search for compatible cluster(s) in bending direction
     107        1288 :   Double_t GetMaxBendingDistanceToTrack() const {return fMaxBendingDistanceToTrack;}
     108             :   
     109             :   /// set the cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking
     110           0 :   void     SetSigmaCutForTracking(Double_t val) {fSigmaCutForTracking = val;} 
     111             :   /// return the cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking
     112        3420 :   Double_t GetSigmaCutForTracking() const {return fSigmaCutForTracking;}
     113             :   
     114             :   /// switch on/off the track improvement and keep the default cut in sigma to apply on cluster (local chi2)
     115           0 :   void     ImproveTracks(Bool_t flag) {fImproveTracks = flag;} 
     116             :   /// switch on/off the track improvement and set the cut in sigma to apply on cluster (local chi2)
     117           0 :   void     ImproveTracks(Bool_t flag, Double_t sigmaCut) {fImproveTracks = flag; fSigmaCutForImprovement = sigmaCut;} 
     118             :   /// return kTRUE/kFALSE if the track improvement is switch on/off
     119          16 :   Bool_t   ImproveTracks() const {return fImproveTracks;}
     120             :   /// return the cut in sigma to apply on cluster (local chi2) during track improvement
     121          72 :   Double_t GetSigmaCutForImprovement() const {return fSigmaCutForImprovement;}
     122             :   
     123             :   /// set the cut in sigma to apply on track during trigger hit pattern search
     124           0 :   void     SetSigmaCutForTrigger(Double_t val) {fSigmaCutForTrigger = val; fMaxNormChi2MatchTrigger = val*val;} 
     125             :   /// return the cut in sigma to apply on track during trigger hit pattern search
     126         256 :   Double_t GetSigmaCutForTrigger() const {return fSigmaCutForTrigger;}
     127             :   /// set the cut in strips to apply on trigger track during trigger chamber efficiency
     128           0 :   void     SetStripCutForTrigger(Double_t val) {fStripCutForTrigger = val;} 
     129             :   /// return the cut in strips to apply on trigger track during trigger chamber efficiency
     130         224 :   Double_t GetStripCutForTrigger() const {return fStripCutForTrigger;}
     131             :   /// set the maximum search area in strips to apply on trigger track during trigger chamber efficiency
     132           0 :   void     SetMaxStripAreaForTrigger(Double_t val) {fMaxStripAreaForTrigger = val;} 
     133             :   /// return the maximum search area in strips to apply on trigger track during trigger chamber efficiency
     134         576 :   Double_t GetMaxStripAreaForTrigger() const {return fMaxStripAreaForTrigger;}
     135             :   
     136             :   /// return the maximum normalized chi2 of tracking/trigger track matching
     137          80 :   Double_t GetMaxNormChi2MatchTrigger() const {return fMaxNormChi2MatchTrigger;}
     138             :   
     139             :   /// switch on/off the tracking of all the possible candidates (track only the best one if switched off)
     140           0 :   void     TrackAllTracks(Bool_t flag) {fTrackAllTracks = flag;} 
     141             :   /// return kTRUE/kFALSE if the tracking of all the possible candidates is switched on/off
     142         640 :   Bool_t   TrackAllTracks() const {return fTrackAllTracks;}
     143             :   
     144             :   /// switch on/off the recovering of tracks being lost during reconstruction
     145           0 :   void     RecoverTracks(Bool_t flag) {fRecoverTracks = flag;} 
     146             :   /// return kTRUE/kFALSE if the recovering of tracks being lost during reconstruction is switched on/off
     147           0 :   Bool_t   RecoverTracks() const {return fRecoverTracks;}
     148             :   
     149             :   /// switch on/off the fast building of track candidates (assuming linear propagation between stations 4 and 5)
     150           0 :   void     MakeTrackCandidatesFast(Bool_t flag) {fMakeTrackCandidatesFast = flag;} 
     151             :   /// return kTRUE/kFALSE if the fast building of track candidates is switched on/off
     152          68 :   Bool_t   MakeTrackCandidatesFast() const {return fMakeTrackCandidatesFast;}
     153             :   
     154             :   /// switch on/off the building of track candidates starting from 1 cluster in each of the stations 4 and 5
     155           0 :   void     MakeMoreTrackCandidates(Bool_t flag) {fMakeMoreTrackCandidates = flag;} 
     156             :   /// return kTRUE/kFALSE if the building of extra track candidates is switched on/off
     157          16 :   Bool_t   MakeMoreTrackCandidates() const {return fMakeMoreTrackCandidates;}
     158             :   
     159             :   /// switch on/off the completion of reconstructed track
     160           0 :   void     ComplementTracks(Bool_t flag) {fComplementTracks = flag;} 
     161             :   /// return kTRUE/kFALSE if completion of the reconstructed track is switched on/off
     162          16 :   Bool_t   ComplementTracks() const {return fComplementTracks;}
     163             :   
     164             :   /// remove tracks sharing cluster in stations 1 or 2
     165           0 :   void     RemoveConnectedTracksInSt12(Bool_t flag) {fRemoveConnectedTracksInSt12 = flag;} 
     166             :   /// return kTRUE/kFALSE whether tracks sharing cluster in station 1 and 2 must be removed or not
     167          32 :   Bool_t   RemoveConnectedTracksInSt12() const {return fRemoveConnectedTracksInSt12;}
     168             :   
     169             :   /// switch on/off the use of the smoother
     170           0 :   void     UseSmoother(Bool_t flag) {fUseSmoother = flag;} 
     171             :   /// return kTRUE/kFALSE if the use of the smoother is switched on/off
     172        2680 :   Bool_t   UseSmoother() const {return fUseSmoother;}
     173             :   
     174             :   /// switch on/off a chamber in the reconstruction
     175           0 :   void     UseChamber(Int_t iCh, Bool_t flag) {if (iCh >= 0 && iCh < 10) fUseChamber[iCh] = flag;}
     176             :   /// return kTRUE/kFALSE whether the chamber must be used or not
     177         640 :   Bool_t   UseChamber(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fUseChamber[iCh] : kFALSE;}
     178             :   
     179             :   /// request or not at least one cluster in the station to validate the track
     180           0 :   void     RequestStation(Int_t iSt, Bool_t flag) {if (iSt >= 0 && iSt < 5) fRequestStation[iSt] = flag;}
     181             :   /// return kTRUE/kFALSE whether at least one cluster is requested in the station to validate the track
     182         736 :   Bool_t   RequestStation(Int_t iSt) const {return (iSt >= 0 && iSt < 5) ? fRequestStation[iSt] : kFALSE;}
     183             :   /// return an integer where first 5 bits are set to 1 if the corresponding station is requested
     184             :   UInt_t   RequestedStationMask() const;
     185             :   
     186             :   /// set the bypassSt45 value
     187             :   void   BypassSt45(Bool_t st4, Bool_t st5);
     188             :   
     189             :   /// return kTRUE if we should replace clusters in St 4 and 5 by generated clusters from trigger tracks
     190          80 :   Bool_t BypassSt45() const { return fBypassSt45==45; }
     191             :   
     192             :   /// return kTRUE if we should replace clusters in St 4 by generated clusters from trigger tracks
     193          80 :   Bool_t BypassSt4() const { return BypassSt45() || fBypassSt45==4 ; }
     194             :   
     195             :   /// return kTRUE if we should replace clusters in St 5 by generated clusters from trigger tracks
     196          80 :   Bool_t BypassSt5() const { return BypassSt45() || fBypassSt45==5 ; }
     197             :   
     198             :   /// Set HV threshold for chambers (chamberId=0..9, use -1 to set all chambers equal)
     199             :   void    SetHVLimit(Int_t chamberId, Double_t ichamber);
     200             :   /// Retrieve HV limit for chamber (chamberId=0..9)
     201             :   Double_t HVLimit(Int_t chamberId) const;
     202             :   
     203             :   /// Set Low and High threshold for pedestal mean
     204           0 :   void    SetPedMeanLimits(float low, float high) { fPedMeanLimits[0]=low; fPedMeanLimits[1]=high; }
     205             :   /// Retrieve low limit of ped mean
     206           4 :   Float_t PedMeanLowLimit() const { return fPedMeanLimits[0]; }
     207             :   /// Retrieve high limit of ped mean
     208           4 :   Float_t PedMeanHighLimit() const { return fPedMeanLimits[1]; }
     209             :   
     210             :   /// Set Low and High threshold for pedestal sigma 
     211           0 :   void    SetPedSigmaLimits(float low, float high) { fPedSigmaLimits[0]=low; fPedSigmaLimits[1]=high; }
     212             :   /// Retrieve low limit of ped sigma
     213           4 :   Float_t PedSigmaLowLimit() const { return fPedSigmaLimits[0]; }
     214             :   /// Retrieve high limit of ped sigma
     215           4 :   Float_t PedSigmaHighLimit() const { return fPedSigmaLimits[1]; }
     216             :     
     217             :   /// Set the goodness mask (see AliMUONPadStatusMapMaker)
     218           0 :   void   SetPadGoodnessMask(UInt_t mask) { fPadGoodnessMask=mask; }
     219             :   /// Get the goodness mask
     220           4 :   UInt_t PadGoodnessMask() const { return fPadGoodnessMask; }
     221             :   
     222             :   /// Number of sigma cut we must apply when cutting on adc-ped
     223           4 :   Double_t ChargeSigmaCut() const { return fChargeSigmaCut; }
     224             :   
     225             :   /// Number of sigma cut we must apply when cutting on adc-ped
     226          12 :   void ChargeSigmaCut(Double_t value) { fChargeSigmaCut=value; }
     227             :   
     228             :   /// Set the default non bending resolution of chamber iCh
     229           0 :   void     SetDefaultNonBendingReso(Int_t iCh, Double_t val) {if (iCh >= 0 && iCh < 10) fDefaultNonBendingReso[iCh] = val;}
     230             :   /// Get the default non bending resolution of chamber iCh
     231         656 :   Double_t GetDefaultNonBendingReso(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fDefaultNonBendingReso[iCh] : FLT_MAX;}
     232             :   /// Set the default bending resolution of chamber iCh
     233           0 :   void     SetDefaultBendingReso(Int_t iCh, Double_t val) {if (iCh >= 0 && iCh < 10) fDefaultBendingReso[iCh] = val;}
     234             :   /// Get the default bending resolution of chamber iCh
     235         656 :   Double_t GetDefaultBendingReso(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fDefaultBendingReso[iCh] : FLT_MAX;}
     236             :   
     237             :   /// Set the maximum number of trigger tracks above which the tracking is cancelled
     238           0 :   void SetMaxTriggerTracks(Int_t maxTriggerTracks) {fMaxTriggerTracks = maxTriggerTracks;}
     239             :   /// Get the maximum number of trigger tracks above which the tracking is cancelled
     240          16 :   Int_t GetMaxTriggerTracks() const {return fMaxTriggerTracks;}
     241             :   
     242             :   /// Set the maximum number of track candidates above which the tracking abort
     243           0 :   void SetMaxTrackCandidates(Int_t maxTrackCandidates) {fMaxTrackCandidates = maxTrackCandidates;}
     244             :   /// Get the maximum number of track candidates above which the tracking abort
     245         184 :   Int_t GetMaxTrackCandidates() const {return fMaxTrackCandidates;}
     246             :   
     247             :   /// Set the limits for the acceptable manu occupancy
     248           0 :   void SetManuOccupancyLimits(float low, float high) { fManuOccupancyLimits[0]=low; fManuOccupancyLimits[1]=high; }
     249             :   /// Retrieve low value of manu occupancy limit
     250           4 :   Float_t ManuOccupancyLowLimit() const { return fManuOccupancyLimits[0]; }
     251             :   /// Retrieve high value of manu occupancy limit
     252           4 :   Float_t ManuOccupancyHighLimit() const { return fManuOccupancyLimits[1]; }
     253             : 
     254             :   /// Set the limits for the acceptable bp occupancy
     255           0 :   void SetBuspatchOccupancyLimits(float low, float high) { fBuspatchOccupancyLimits[0]=low; fBuspatchOccupancyLimits[1]=high; }
     256             :   /// Retrieve low value of bp occupancy limit
     257           4 :   Float_t BuspatchOccupancyLowLimit() const { return fBuspatchOccupancyLimits[0]; }
     258             :   /// Retrieve high value of bp occupancy limit
     259           4 :   Float_t BuspatchOccupancyHighLimit() const { return fBuspatchOccupancyLimits[1]; }
     260             : 
     261             :   /// Set the limits for the acceptable DE occupancy
     262           0 :   void SetDEOccupancyLimits(float low, float high) { fDEOccupancyLimits[0]=low; fDEOccupancyLimits[1]=high; }
     263             :   /// Retrieve low value of DE occupancy limit
     264           4 :   Float_t DEOccupancyLowLimit() const { return fDEOccupancyLimits[0]; }
     265             :   /// Retrieve high value of DE occupancy limit
     266           4 :   Float_t DEOccupancyHighLimit() const { return fDEOccupancyLimits[1]; }
     267             :   
     268             :   /// Set the fraction of buspatches outside the occupancy limits
     269           0 :   void SetFractionOfBuspatchOutsideOccupancyLimit(float v) { fFractionOfBuspatchOutsideOccupancyLimit = v; }
     270             :   /// Get the fraction of buspatches outside the occupancy limits
     271           0 :   Float_t FractionOfBuspatchOutsideOccupancyLimit() const { return fFractionOfBuspatchOutsideOccupancyLimit; }
     272             : 
     273             :   virtual void Print(Option_t *option = "") const;
     274             :   
     275             :   /// Get the max event size (soft limit)
     276           0 :   virtual Double_t EventSizeSoftLimit() const { return fEventSizeSoftLimit; }
     277             :   
     278             :   /// Get the max event size (hard limit)
     279           0 :   virtual Double_t EventSizeHardLimit() const { return fEventSizeHardLimit; }
     280             : 
     281             :   /// Set the max event size limits
     282          12 :   virtual void SetEventSizeLimits(Double_t soft, Double_t hard) { fEventSizeSoftLimit=soft; fEventSizeHardLimit=hard; }
     283             :   
     284             :   /// Get the percentage of token lost error we allow
     285           0 :   virtual Double_t TokenLostLimit() const { return fTokenLostLimit; }
     286             : 
     287             :   /// Set the percentage of token lost error we allow
     288          12 :   virtual void SetTokenLostLimit(Double_t limit) { fTokenLostLimit = limit; }
     289             : 
     290             :   /// Whether or not we try to recover corrupted raw data
     291           2 :   virtual Bool_t TryRecover() const { return fTryRecover; }
     292             : 
     293             :   /// Set the try recover corrupted raw data (use kTRUE only if you know what you are doing. Should be left to kFALSE by default)
     294           0 :   virtual void TryRecover(Bool_t flag) { fTryRecover = flag; }
     295             : 
     296             :   /// Discard or not the mono-cathod clusters by assigning to them different resolutions (use default values)
     297           0 :   void     DiscardMonoCathodClusters(Bool_t flag) { fDiscardMonoCathodClusters = flag; }
     298             :   /// Discard or not the mono-cathod clusters by assigning to them different resolutions (use given values)
     299           0 :   void     DiscardMonoCathodClusters(Bool_t flag, Double_t resNB, Double_t resB) { fDiscardMonoCathodClusters = flag;
     300           0 :                                      fMonoCathodClNonBendingRes = resNB; fMonoCathodClBendingRes = resB; }
     301             :   /// Check whether to discard or not the mono-cathod clusters
     302          16 :   Bool_t   DiscardMonoCathodClusters() const { return fDiscardMonoCathodClusters; }
     303             :   /// Get the non-bending resolution of mono-cathod clusters when the non-bending plane is missing
     304           0 :   Double_t GetMonoCathodClNonBendingRes() const { return fMonoCathodClNonBendingRes; }
     305             :   /// Get the bending resolution of mono-cathod clusters when the bending plane is missing
     306           0 :   Double_t GetMonoCathodClBendingRes() const { return fMonoCathodClBendingRes; }
     307             :   
     308             :   /// Create object ready to be put in OCDB
     309             :   static TObjArray* Create(const char* settings);
     310             :   
     311             :   /// Show what is the OCDB for that run
     312             :   static void Show(Int_t runNumber, const char* ocdbPath="raw://");
     313             :   
     314             : private:
     315             :   
     316             :   void SetDefaultLimits();
     317             :   
     318             :  private:
     319             :   
     320             :   /// clustering mode:  NOCLUSTERING, PRECLUSTER, PRECLUSTERV2, PRECLUSTERV3, COG, <pre>
     321             :   ///                   SIMPLEFIT, SIMPLEFITV3, MLEM:DRAW, MLEM, MLEMV2, MLEMV3   </pre>
     322             :   TString fClusteringMode; ///< \brief name of the clustering (+ pre-clustering) mode
     323             :   
     324             :   /// tracking mode: ORIGINAL, KALMAN
     325             :   TString fTrackingMode; ///< \brief name of the tracking mode
     326             :   
     327             :   Double32_t fMinBendingMomentum; ///< minimum value (GeV/c) of momentum in bending plane
     328             :   Double32_t fMaxBendingMomentum; ///< maximum value (GeV/c) of momentum in bending plane
     329             :   Double32_t fMaxNonBendingSlope; ///< maximum value of the non bending slope
     330             :   Double32_t fMaxBendingSlope;    ///< maximum value of the bending slope (used only if B = 0)
     331             :   
     332             :   Double32_t fNonBendingVertexDispersion; ///< vertex dispersion (cm) in non bending plane (used for original tracking only)
     333             :   Double32_t fBendingVertexDispersion;    ///< vertex dispersion (cm) in bending plane (used for original tracking only)
     334             :   
     335             :   Double32_t fMaxNonBendingDistanceToTrack; ///< maximum distance to the track to search for compatible cluster(s) in non bending direction
     336             :   Double32_t fMaxBendingDistanceToTrack;    ///< maximum distance to the track to search for compatible cluster(s) in bending direction
     337             :   
     338             :   Double32_t fSigmaCutForTracking; ///< cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking
     339             : 
     340             :   Double32_t fSigmaCutForImprovement; ///< cut in sigma to apply on cluster (local chi2) during track improvement
     341             :   
     342             :   Double32_t fSigmaCutForTrigger; ///< cut in sigma to apply on track during trigger hit pattern search
     343             : 
     344             :   Double32_t fStripCutForTrigger; ///< cut in strips to apply on trigger track during trigger chamber efficiency
     345             : 
     346             :   Double32_t fMaxStripAreaForTrigger; ///< max. search area in strips to apply on trigger track during trigger chamber efficiency
     347             :   
     348             :   Double32_t fMaxNormChi2MatchTrigger; ///< maximum normalized chi2 of tracking/trigger track matching
     349             :   
     350             :   Double32_t fPercentOfFullClusterInESD; ///< percentage of events for which all cluster info are stored in ESD
     351             :   
     352             :   Bool_t     fCombinedClusterTrackReco; ///< switch on/off the combined cluster/track reconstruction
     353             :   
     354             :   Bool_t     fTrackAllTracks; ///< kTRUE to track all the possible candidates; kFALSE to track only the best ones
     355             :   
     356             :   Bool_t     fRecoverTracks; ///< kTRUE to try to recover the tracks getting lost during reconstruction
     357             :   
     358             :   Bool_t     fMakeTrackCandidatesFast; ///< kTRUE to make candidate tracks assuming linear propagation between stations 4 and 5
     359             :   
     360             :   Bool_t     fMakeMoreTrackCandidates; ///< kTRUE to make candidate tracks starting from 1 cluster in each of the stations 4 and 5
     361             :   
     362             :   Bool_t     fComplementTracks; ///< kTRUE to try to complete the reconstructed tracks by adding missing clusters
     363             :   
     364             :   Bool_t     fImproveTracks; ///< kTRUE to try to improve the reconstructed tracks by removing bad clusters
     365             :   
     366             :   Bool_t     fUseSmoother; ///< kTRUE to use the smoother to compute track parameters/covariances and local chi2 at each cluster (used for Kalman tracking only)
     367             :   
     368             :   Bool_t     fSaveFullClusterInESD; ///< kTRUE to save all cluster info (including pads) in ESD
     369             :   
     370             :   Int_t      fBypassSt45; ///< non-zero to use trigger tracks to generate "fake" clusters in St 4 and 5. Can be 0, 4, 5 or 45 only
     371             :   
     372             :   Bool_t     fUseChamber[10]; ///< kTRUE to use the chamber i in the tracking algorithm
     373             :   
     374             :   Bool_t     fRequestStation[5]; ///< kTRUE to request at least one cluster in station i to validate the track
     375             :   
     376             :   Double32_t fHVSt12Limits[2]; ///< DEPRECATED. See fHVLimits
     377             :   Double32_t fHVSt345Limits[2]; ///< DEPRECATED. See fHVLimits
     378             :   Double32_t fPedMeanLimits[2]; ///< Low and High threshold for pedestal mean
     379             :   Double32_t fPedSigmaLimits[2]; ///< Low and High threshold for pedestal sigma
     380             :   
     381             :   UInt_t     fPadGoodnessMask; ///< goodness mask (see AliMUONPadStatusMaker)
     382             :   
     383             :   Double32_t fChargeSigmaCut; ///< number of sigma to cut on adc-ped 
     384             :   
     385             :   Double32_t fDefaultNonBendingReso[10]; ///< default chamber resolution in the non-bending direction
     386             :   Double32_t fDefaultBendingReso[10]; ///< default chamber resolution in the bending direction
     387             :   
     388             :   Bool_t     fRemoveConnectedTracksInSt12; ///< kTRUE to remove tracks sharing cluster in station 1 and 2
     389             :   
     390             :   Int_t      fMaxTriggerTracks; ///< maximum number of trigger tracks above which the tracking is cancelled
     391             :   Int_t      fMaxTrackCandidates; ///< maximum number of track candidates above which the tracking abort
     392             :   
     393             :   Bool_t     fSelectTrackOnSlope; ///< select track candidates according to their slope (instead of their impact parameter)
     394             :   
     395             :   Double32_t fManuOccupancyLimits[2]; ///< low and high thresholds for manu occupancy cut
     396             :   Double32_t fBuspatchOccupancyLimits[2]; ///< low and high thresholds for bus patch occupancy cut
     397             :   Double32_t fDEOccupancyLimits[2]; ///< low and high thresholds for DE occupancy cut
     398             : 
     399             :   Double32_t fMissingPadFractionLimit; ///< DEPRECATED
     400             :   Double32_t fFractionOfBuspatchOutsideOccupancyLimit; ///< above this limit, we consider we have too many buspatches out of the allowed occupancy range
     401             : 
     402             :   Double32_t fAverageNoisePadCharge; ///< the (truncated, typically at 10%) mean of the sigma of the pedestals, in femto-coulomb
     403             :   Double32_t fClusterChargeCut; ///< the cluster is cut if its charge is below fClusterChargeCut*LowestPadCharge()
     404             :   
     405             :   Double32_t fEventSizeSoftLimit; ///< (soft) limit on mean event size per event (KB)
     406             :   Double32_t fEventSizeHardLimit; ///< (hard) limit on mean event size per event (KB)
     407             :   
     408             :   Double32_t fTokenLostLimit; ///< limit on the fraction of token lost error per event we allow
     409             :   
     410             :   Bool_t     fTryRecover; ///< try to recover corrupted raw data
     411             : 
     412             :   Double32_t fHVLimit[10]; // HV limit (below which we consider that chamber efficiency is to be considered zero)
     413             :   
     414             :   Double32_t fDiscardMonoCathodClusters; // assign a different resolution to mono-cathod clusters in the direction of the missing plane
     415             :   Double32_t fMonoCathodClNonBendingRes; // resolution of mono-cathod clusters in the non-bending direction when the non-bending plane is missing
     416             :   Double32_t fMonoCathodClBendingRes; // resolution of mono-cathod clusters in the bending direction when the bending plane is missing
     417             :   
     418             :   // functions
     419             :   void SetLowFluxParam();
     420             :   void SetHighFluxParam();
     421             :   void SetCosmicParam();
     422             :   void SetCalibrationParam();
     423             :   
     424          36 :   ClassDef(AliMUONRecoParam,171) // MUON reco parameters
     425             :   // we're at 171 not because we had that many versions, but because at some point (version 15->16)
     426             :   // 166 was committed by error, and we did not to go reverse afterwards...
     427             : };
     428             : 
     429             : #endif
     430             : 

Generated by: LCOV version 1.11