Line data Source code
1 : /**************************************************************************
2 : * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 : * *
4 : * Author: The ALICE Off-line Project. *
5 : * Contributors are mentioned in the code where appropriate. *
6 : * *
7 : * Permission to use, copy, modify and distribute this software and its *
8 : * documentation strictly for non-commercial purposes is hereby granted *
9 : * without fee, provided that the above copyright notice appears in all *
10 : * copies and that both the copyright notice and this permission notice *
11 : * appear in the supporting documentation. The authors make no claims *
12 : * about the suitability of this software for any purpeateose. It is *
13 : * provided "as is" without express or implied warranty. *
14 : **************************************************************************/
15 :
16 : /* $Id$ */
17 :
18 : //-----------------------------------------------------------------------------
19 : // Class AliMUONv1
20 : // --------------------
21 : // AliDetector class for MUON subsystem which implements
22 : // functions for simulation
23 : //-----------------------------------------------------------------------------
24 :
25 : #include "AliMUONv1.h"
26 : #include "AliMUONConstants.h"
27 : #include "AliMUONResponseFactory.h"
28 : #include "AliMUONHit.h"
29 : #include "AliMUONGeometryBuilder.h"
30 : #include "AliMUONGeometry.h"
31 : #include "AliMUONGeometryTransformer.h"
32 : #include "AliMUONGeometryModule.h"
33 : #include "AliMUONStringIntMap.h"
34 : #include "AliMUONGeometryDetElement.h"
35 :
36 : #include "AliMpCDB.h"
37 : #include "AliMpDEManager.h"
38 :
39 : #include "AliConst.h"
40 : #include "AliMagF.h"
41 : #include "AliRun.h"
42 : #include "AliMC.h"
43 : #include "AliTrackReference.h"
44 : #include "AliLog.h"
45 :
46 : #include <TClonesArray.h>
47 : #include <TF1.h>
48 : #include <TF2.h>
49 : #include <TGeoGlobalMagField.h>
50 : #include <TGeoMatrix.h>
51 : #include <TRandom.h>
52 : #include <TRandom.h>
53 : #include <TVirtualMC.h>
54 :
55 : #include <string>
56 :
57 : #include "AliMUONVHitStore.h"
58 : #include <iostream>
59 : #include <iomanip>
60 :
61 : using std::endl;
62 : using std::cout;
63 : using std::setw;
64 : /// \cond CLASSIMP
65 16 : ClassImp(AliMUONv1)
66 : /// \endcond
67 :
68 : //___________________________________________
69 : AliMUONv1::AliMUONv1()
70 12 : : AliMUON(),
71 12 : fAngleEffect(kTRUE),
72 12 : fMagEffect(kTRUE),
73 12 : fStepMaxInActiveGas(0.6),
74 12 : fStepSum(0x0),
75 12 : fDestepSum(0x0),
76 12 : fTrackMomentum(),
77 12 : fTrackPosition(),
78 12 : fElossRatio(0x0),
79 12 : fAngleEffect10(0x0),
80 12 : fAngleEffectNorma(0x0),
81 12 : fMagAngleEffectNorma(0x0)
82 60 : {
83 : /// Default constructor
84 :
85 60 : AliDebug(1,Form("default (empty) ctor this=%p",this));
86 24 : }
87 :
88 : //___________________________________________
89 : AliMUONv1::AliMUONv1(const char *name, const char* title)
90 1 : : AliMUON(name, title),
91 1 : fAngleEffect(kTRUE),
92 1 : fMagEffect(kTRUE),
93 1 : fStepMaxInActiveGas(0.6),
94 1 : fStepSum(0x0),
95 1 : fDestepSum(0x0),
96 1 : fTrackMomentum(),
97 1 : fTrackPosition(),
98 1 : fElossRatio(0x0),
99 1 : fAngleEffect10(0x0),
100 1 : fAngleEffectNorma(0x0),
101 1 : fMagAngleEffectNorma(0x0)
102 5 : {
103 : /// Standard onstructor
104 :
105 5 : AliDebug(1,Form("ctor this=%p",this));
106 :
107 : // Load mapping
108 2 : if ( ! AliMpCDB::LoadMpSegmentation() ) {
109 0 : AliFatal("Could not access mapping from OCDB !");
110 : }
111 :
112 : // By default include all stations
113 :
114 3 : fStepSum = new Float_t [AliMUONConstants::NCh()];
115 3 : fDestepSum = new Float_t [AliMUONConstants::NCh()];
116 45 : for (Int_t i=0; i<AliMUONConstants::NCh(); i++) {
117 14 : fStepSum[i] =0.0;
118 14 : fDestepSum[i]=0.0;
119 : }
120 : // Ratio of particle mean eloss with respect MIP's Khalil Boudjemline, sep 2003, PhD.Thesis and Particle Data Book
121 3 : fElossRatio = new TF1("ElossRatio","[0]+[1]*x+[2]*x*x+[3]*x*x*x+[4]*x*x*x*x",0.5,5.);
122 1 : fElossRatio->SetParameter(0,1.02138);
123 1 : fElossRatio->SetParameter(1,-9.54149e-02);
124 1 : fElossRatio->SetParameter(2,+7.83433e-02);
125 1 : fElossRatio->SetParameter(3,-9.98208e-03);
126 1 : fElossRatio->SetParameter(4,+3.83279e-04);
127 :
128 : // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers)
129 3 : fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0);
130 1 : fAngleEffect10->SetParameter(0, 1.90691e+02);
131 1 : fAngleEffect10->SetParameter(1,-6.62258e+01);
132 1 : fAngleEffect10->SetParameter(2,+1.28247e+01);
133 : // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis)
134 : // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
135 3 : fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0);
136 1 : fAngleEffectNorma->SetParameter(0,4.148);
137 1 : fAngleEffectNorma->SetParameter(1,-6.809e-01);
138 1 : fAngleEffectNorma->SetParameter(2,5.151e-02);
139 1 : fAngleEffectNorma->SetParameter(3,-1.490e-03);
140 :
141 : // Magnetic field effect: Normalisation form theta=16 degres (eq. 10 degrees B=0) to theta between -20 and 20 (Lamia Benhabib jun 2006 )
142 : // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
143 3 : fMagAngleEffectNorma = new TF2("MagAngleEffectNorma","121.24/(([1]+[2]*abs(y))+[3]*abs(x-[0]*y)+[4]*abs((x-[0]*y)*(x-[0]*y))+[5]*abs((x-[0]*y)*(x-[0]*y)*(x-[0]*y))+[6]*abs((x-[0]*y)*(x-[0]*y)*(x-[0]*y)*(x-[0]*y)))",-20.0,20.0,-1.,1.);
144 1 : fMagAngleEffectNorma->SetParameters(8.6995, 25.4022, 13.8822, 2.4717, 1.1551, -0.0624, 0.0012);
145 2 : }
146 :
147 : //___________________________________________
148 : AliMUONv1::~AliMUONv1()
149 78 : {
150 : /// Destructor
151 :
152 65 : AliDebug(1,Form("dtor this=%p",this));
153 14 : delete [] fStepSum;
154 14 : delete [] fDestepSum;
155 26 : delete fElossRatio;
156 26 : delete fAngleEffect10;
157 26 : delete fAngleEffectNorma;
158 26 : delete fMagAngleEffectNorma;
159 39 : }
160 :
161 : //__________________________________________________
162 : void AliMUONv1::CreateGeometry()
163 : {
164 : /// Construct geometry using geometry builder
165 :
166 2 : fGeometryBuilder->CreateGeometry();
167 1 : }
168 :
169 : //________________________________________________________________
170 : void AliMUONv1::CreateMaterials()
171 : {
172 : /// Construct materials using geometry builder
173 :
174 2 : fGeometryBuilder->CreateMaterials();
175 1 : }
176 :
177 : //________________________________________________________________
178 : void AliMUONv1::UpdateInternalGeometry()
179 : {
180 : /// Update geometry after applying mis-alignment
181 :
182 : // Load mapping
183 2 : if ( ! AliMpCDB::LoadMpSegmentation() ) {
184 0 : AliFatal("Could not access mapping from OCDB !");
185 0 : }
186 :
187 1 : fGeometryBuilder->UpdateInternalGeometry();
188 1 : }
189 :
190 : //________________________________________________________________
191 : void AliMUONv1::AddAlignableVolumes() const
192 : {
193 : /// Construct materials using geometry builder
194 :
195 2 : GetGeometryTransformer()->AddAlignableVolumes();
196 1 : }
197 :
198 :
199 : //___________________________________________
200 : void AliMUONv1::Init()
201 : {
202 : /// Initialize geometry
203 :
204 4 : AliDebug(1,"Start Init for version 1 - CPC chamber type");
205 :
206 1 : fGeometryBuilder->InitGeometry();
207 3 : AliDebug(1,"Finished Init for version 1 - CPC chamber type");
208 :
209 :
210 : // Build segmentation
211 : // using geometry parametrisation
212 : //
213 : // Build response
214 : //
215 1 : AliMUONResponseFactory respFactory("default", fIsTailEffect);
216 1 : respFactory.Build(this);
217 :
218 1 : }
219 :
220 : //__________________________________________________________________
221 : Int_t AliMUONv1::GetGeomModuleId(Int_t volId) const
222 : {
223 : /// Check if the volume with specified volId is a sensitive volume (gas)
224 : /// of some chamber and return the chamber number;
225 : /// if not sensitive volume - return 0.
226 :
227 371803 : for (Int_t i = 0; i < AliMUONConstants::NGeomModules(); i++) {
228 169535 : if ( GetGeometry()->GetModule(i)->IsSensitiveVolume(volId) )
229 745 : return i;
230 : }
231 :
232 7997 : return -1;
233 8742 : }
234 :
235 : //_______________________________________________________________________________
236 : TString AliMUONv1::CurrentVolumePath() const
237 : {
238 : /// Return current volume path
239 : /// (Could be removed when this function is available via TVirtualMC::GetMC())
240 :
241 1950 : TString path = "";
242 975 : TString name;
243 975 : Int_t copyNo;
244 : Int_t imother = 0;
245 975 : do {
246 22152 : name = TVirtualMC::GetMC()->CurrentVolOffName(imother);
247 14768 : TVirtualMC::GetMC()->CurrentVolOffID(imother++, copyNo);
248 7384 : TString add = "/";
249 7384 : add += name;
250 7384 : add += "_";
251 7384 : add += copyNo;
252 7384 : path.Insert(0,add);
253 14768 : }
254 22152 : while ( name != TString("ALIC") );
255 :
256 : return path;
257 1950 : }
258 :
259 : //_______________________________________________________________________________
260 : void AliMUONv1::StepManager()
261 : {
262 : /// Step manager for the chambers
263 :
264 : // Only charged tracks
265 18128 : if( !(TVirtualMC::GetMC()->TrackCharge()) ) return;
266 : // Only charged tracks
267 :
268 : // Only gas gap inside chamber
269 : // Tag chambers and record hits when track enters
270 : static Int_t idvol=-1, iEnter = 0;
271 8742 : Int_t copy;
272 : const Float_t kBig = 1.e10;
273 : static Double_t xyzEnter[3];
274 :
275 : //
276 : // Only gas gap inside chamber
277 : // Tag chambers and record hits when track enters
278 8742 : Int_t id=TVirtualMC::GetMC()->CurrentVolID(copy);
279 8742 : Int_t iGeomModule = GetGeomModuleId(id);
280 16739 : if (iGeomModule == -1) return;
281 :
282 : // Detection elements id
283 : const AliMUONGeometryModule* kGeometryModule
284 745 : = GetGeometry()->GetModule(iGeomModule);
285 : AliMUONGeometryDetElement* detElement
286 1490 : = kGeometryModule->FindBySensitiveVolume(CurrentVolumePath());
287 :
288 975 : if (!detElement && iGeomModule < AliMUONConstants::NGeomModules()-2) {
289 230 : iGeomModule++;
290 : const AliMUONGeometryModule* kGeometryModule2
291 230 : = GetGeometry()->GetModule(iGeomModule);
292 230 : detElement
293 230 : = kGeometryModule2->FindBySensitiveVolume(CurrentVolumePath());
294 230 : }
295 :
296 : Int_t detElemId = 0;
297 1490 : if (detElement) detElemId = detElement->GetUniqueID();
298 :
299 745 : if (!detElemId) {
300 0 : AliErrorStream()
301 0 : << "Geometry module id: "
302 0 : << setw(3) << iGeomModule << " "
303 0 : << "Current SV: "
304 0 : << CurrentVolumePath()
305 0 : << " detElemId: "
306 0 : << setw(5) << detElemId
307 0 : << endl;
308 0 : Double_t x, y, z;
309 0 : TVirtualMC::GetMC()->TrackPosition(x, y, z);
310 0 : AliErrorStream()
311 0 : << " global position: "
312 0 : << x << ", " << y << ", " << z
313 0 : << endl;
314 0 : AliErrorStream() << "DetElemId not identified." << endl;
315 0 : }
316 :
317 745 : Int_t iChamber = AliMpDEManager::GetChamberId(detElemId) + 1;
318 745 : idvol = iChamber -1;
319 :
320 : // Filling TrackRefs file for MUON. Our Track references are the active volume of the chambers
321 1375 : if ( (TVirtualMC::GetMC()->IsTrackEntering() || TVirtualMC::GetMC()->IsTrackExiting() ) ) {
322 : AliTrackReference* trackReference
323 230 : = AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kMUON);
324 230 : trackReference->SetUserId(detElemId);
325 230 : }
326 :
327 745 : if( TVirtualMC::GetMC()->IsTrackEntering() ) {
328 115 : Float_t theta = fTrackMomentum.Theta();
329 230 : if ( fIsMaxStep && (TMath::Pi()-theta)*kRaddeg>=15. ) {
330 2 : TVirtualMC::GetMC()->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative
331 2 : }
332 115 : iEnter = 1;
333 115 : TVirtualMC::GetMC()->TrackPosition(xyzEnter[0], xyzEnter[1], xyzEnter[2]); // save coordinates of entrance point
334 115 : }
335 :
336 : // AliDebug(1,
337 : // Form("Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber,
338 : // ( (AliMUONChamber*)(*fChambers)[idvol])->Z())) ;
339 : // Particule id and mass,
340 745 : Int_t ipart = TVirtualMC::GetMC()->TrackPid();
341 745 : Float_t mass = TVirtualMC::GetMC()->TrackMass();
342 :
343 745 : fDestepSum[idvol]+=TVirtualMC::GetMC()->Edep();
344 : // Get current particle id (ipart), track position (pos) and momentum (mom)
345 975 : if ( fStepSum[idvol]==0.0 ) TVirtualMC::GetMC()->TrackMomentum(fTrackMomentum);
346 745 : fStepSum[idvol]+=TVirtualMC::GetMC()->TrackStep();
347 :
348 : // if (AliDebugLevel()) {
349 : // AliDebug(1,Form("Step, iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g",
350 : // iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg,
351 : // mass, fStepSum[idvol], TVirtualMC::GetMC()->Edep()));
352 : // AliDebug(1,Form("Step:Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(),
353 : // fTrackMomentum.Z()));
354 : // TVirtualMC::GetMC()->TrackPosition(fTrackPosition);
355 : // AliDebug(1,Form("Step: Track Position %f %f %f",fTrackPosition.X(),
356 : // fTrackPosition.Y(),fTrackPosition.Z())) ;
357 : //}
358 :
359 : // Track left chamber or StepSum larger than fStepMaxInActiveGas
360 1375 : if ( TVirtualMC::GetMC()->IsTrackExiting() ||
361 630 : TVirtualMC::GetMC()->IsTrackStop() ||
362 630 : TVirtualMC::GetMC()->IsTrackDisappeared()||
363 630 : (fStepSum[idvol]>fStepMaxInActiveGas) ) {
364 :
365 115 : if ( fIsMaxStep &&
366 115 : ( TVirtualMC::GetMC()->IsTrackExiting() ||
367 0 : TVirtualMC::GetMC()->IsTrackStop() ||
368 115 : TVirtualMC::GetMC()->IsTrackDisappeared() ) ) TVirtualMC::GetMC()->SetMaxStep(kBig);
369 115 : if (fDestepSum[idvol] == 0) {
370 : // AZ - no energy release
371 0 : fStepSum[idvol] = 0; // Reset for the next event
372 0 : iEnter = 0;
373 0 : return;
374 : }
375 :
376 115 : TVirtualMC::GetMC()->TrackPosition(fTrackPosition);
377 115 : Float_t theta = fTrackMomentum.Theta();
378 115 : Float_t phi = fTrackMomentum.Phi();
379 :
380 : Int_t merge = 0;
381 115 : Double_t xyz0[3]={0}, xyz1[3]={0}, tmp[3]={0};
382 115 : if (TVirtualMC::GetMC()->IsTrackExiting() && iEnter != 0) {
383 : // AZ - this code is to avoid artificial hit splitting at the
384 : // "fake" boundary inside the same chamber. It will still produce
385 : // 2 hits but with the same coordinates (at the wire) to allow
386 : // their merging at the digitization level.
387 :
388 : // Only for a track going from the entrance to the exit from the volume
389 : // Get local coordinates
390 115 : TVirtualMC::GetMC()->Gmtod(xyzEnter, xyz0, 1); // local coord. at the entrance
391 :
392 115 : fTrackPosition.Vect().GetXYZ(tmp);
393 115 : TVirtualMC::GetMC()->Gmtod(tmp, xyz1, 1); // local coord. at the exit
394 115 : Float_t dx = xyz0[0] - xyz1[0];
395 115 : Float_t dy = xyz0[1] - xyz1[1];
396 115 : Float_t thLoc = TMath::ATan2 (TMath::Sqrt(dx*dx+dy*dy), TMath::Abs(xyz0[2]-xyz1[2]));
397 229 : if (thLoc * TMath::RadToDeg() < 15) merge = 1;
398 115 : }
399 :
400 115 : if (merge) {
401 : Double_t dz = -0.5;
402 228 : if (xyz1[2] != xyz0[2]) dz = xyz0[2] / (xyz1[2] - xyz0[2]);
403 114 : tmp[0] = xyz0[0] - (xyz1[0] - xyz0[0]) * dz; // local coord. at the wire
404 114 : tmp[1] = xyz0[1] - (xyz1[1] - xyz0[1]) * dz;
405 114 : tmp[2] = xyz0[2] - (xyz1[2] - xyz0[2]) * dz;
406 114 : TVirtualMC::GetMC()->Gdtom(tmp, xyz1, 1); // global coord. at the wire
407 114 : fTrackPosition.SetXYZT(xyz1[0], xyz1[1], xyz1[2], fTrackPosition.T());
408 114 : } else {
409 2 : TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi),
410 1 : fStepSum[idvol]/2.*sin(theta)*sin(phi),
411 1 : fStepSum[idvol]/2.*cos(theta),0.0 );
412 1 : fTrackPosition-=backToWire;
413 : //printf(" %d %d %d %f %d \n", TVirtualMC::GetMC()->IsTrackExiting(), TVirtualMC::GetMC()->IsTrackStop(), TVirtualMC::GetMC()->IsTrackDisappeared(), fStepSum[idvol], iEnter);
414 : // AliDebug(1,
415 : // Form("Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()));
416 : // AliDebug(1,
417 : // Form("Exit: Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z())) ;
418 1 : }
419 :
420 : //-------------- Angle effect
421 : // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass)
422 :
423 115 : Float_t betaxGamma = fTrackMomentum.P()/mass;// pc/mc2
424 : Float_t sigmaEffect10degrees;
425 : Float_t sigmaEffectThetadegrees;
426 : Float_t eLossParticleELossMip;
427 : Float_t yAngleEffect=0.;
428 115 : Float_t thetawires = TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) ;// We use Pi-theta because z is negative
429 115 : Double_t bField[3] = {0};
430 115 : fTrackPosition.Vect().GetXYZ(tmp);
431 115 : TGeoGlobalMagField::Instance()->Field(tmp,bField);
432 :
433 230 : if (fAngleEffect && !fMagEffect){
434 0 : thetawires = TMath::Abs(thetawires);
435 0 : if ( (betaxGamma >3.2) && (thetawires*kRaddeg<=15.) ) {
436 0 : betaxGamma=TMath::Log(betaxGamma);
437 0 : eLossParticleELossMip = fElossRatio->Eval(betaxGamma);
438 : // 10 degrees is a reference for a model (arbitrary)
439 0 : sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers
440 : // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
441 0 : sigmaEffectThetadegrees = sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg); // For 5mm gap
442 0 : if ( (iChamber==1) || (iChamber==2) )
443 0 : sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm)
444 0 : yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm
445 0 : }
446 : }
447 230 : else if (fAngleEffect && fMagEffect) {
448 229 : if ( (betaxGamma >3.2) && (TMath::Abs(thetawires*kRaddeg)<=15.) ) {
449 114 : betaxGamma=TMath::Log(betaxGamma);
450 114 : eLossParticleELossMip = fElossRatio->Eval(betaxGamma);
451 : // 10 degrees is a reference for a model (arbitrary)
452 114 : sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers
453 : // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
454 114 : sigmaEffectThetadegrees = sigmaEffect10degrees/fMagAngleEffectNorma->Eval(thetawires*kRaddeg,bField[0]/10.); // For 5mm gap
455 114 : if ( (iChamber==1) || (iChamber==2) )
456 16 : sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm)
457 114 : yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm
458 114 : }
459 : }
460 :
461 230 : AliMUONHit hit(fIshunt,
462 115 : gAlice->GetMCApp()->GetCurrentTrackNumber(),
463 : detElemId, ipart,
464 115 : fTrackPosition.X(),
465 115 : fTrackPosition.Y()+yAngleEffect,
466 115 : fTrackPosition.Z(),
467 115 : TVirtualMC::GetMC()->TrackTime(),
468 115 : fTrackMomentum.P(),
469 : theta,
470 : phi,
471 115 : fStepSum[idvol],
472 115 : fDestepSum[idvol],
473 115 : fTrackPosition.X(),
474 115 : fTrackPosition.Y(),
475 115 : fTrackPosition.Z());
476 :
477 115 : fHitStore->Add(hit);
478 :
479 115 : fStepSum[idvol] =0; // Reset for the next event
480 115 : fDestepSum[idvol]=0; // Reset for the next event
481 115 : iEnter = 0;
482 115 : }
483 18551 : }
|