Line data Source code
1 : /***************************************************************************
2 : * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 : * *
4 : * Author: The ALICE Off-line Project. *
5 : * Contributors are mentioned in the code where appropriate. *
6 : * *
7 : * Permission to use, copy, modify and distribute this software and its *
8 : * documentation strictly for non-commercial purposes is hereby granted *
9 : * without fee, provided that the above copyright notice appears in all *
10 : * copies and that both the copyright notice and this permission notice *
11 : * appear in the supporting documentation. The authors make no claims *
12 : * about the suitability of this software for any purpose. It is *
13 : * provided "as is" without express or implied warranty. *
14 : **************************************************************************/
15 :
16 : /* $Id$ */
17 :
18 : //
19 : ///////////////////////////////////////////////////////////////////////////////
20 : // //
21 : // Photon Multiplicity Detector Version 1 //
22 : // //
23 : //Begin_Html
24 : /*
25 : <img src="picts/AliPMDv0Class.gif">
26 : */
27 : //End_Html
28 : // //
29 : ///////////////////////////////////////////////////////////////////////////////
30 : ////
31 :
32 : #include <Riostream.h>
33 : #include <TGeoManager.h>
34 : #include <TGeoGlobalMagField.h>
35 : #include <TVirtualMC.h>
36 :
37 : #include "AliConst.h"
38 : #include "AliMagF.h"
39 : #include "AliPMDv0.h"
40 : #include "AliRun.h"
41 : #include "AliMC.h"
42 : #include "AliLog.h"
43 :
44 : const Int_t AliPMDv0::fgkNcellHole = 24; // Hole dimension
45 : const Float_t AliPMDv0::fgkCellRadius = 0.25; // Radius of a hexagonal cell
46 : const Float_t AliPMDv0::fgkCellWall = 0.02; // Thickness of cell Wall
47 : const Float_t AliPMDv0::fgkCellDepth = 0.50; // Gas thickness
48 : const Float_t AliPMDv0::fgkBoundary = 0.7; // Thickness of Boundary wall
49 : const Float_t AliPMDv0::fgkThBase = 0.3; // Thickness of Base plate
50 : const Float_t AliPMDv0::fgkThAir = 0.1; // Thickness of Air
51 : const Float_t AliPMDv0::fgkThPCB = 0.16; // Thickness of PCB
52 : const Float_t AliPMDv0::fgkThLead = 1.5; // Thickness of Pb
53 : const Float_t AliPMDv0::fgkThSteel = 0.5; // Thickness of Steel
54 : const Float_t AliPMDv0::fgkZdist = 361.5; // z-position of the detector
55 : const Float_t AliPMDv0::fgkSqroot3 = 1.7320508;// Square Root of 3
56 : const Float_t AliPMDv0::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2
57 : const Float_t AliPMDv0::fgkPi = 3.14159; // pi
58 :
59 12 : ClassImp(AliPMDv0)
60 :
61 : //_____________________________________________________________________________
62 0 : AliPMDv0::AliPMDv0():
63 0 : fSMthick(0.),
64 0 : fSMLength(0.),
65 0 : fMedSens(0),
66 0 : fNcellSM(0)
67 0 : {
68 : //
69 : // Default constructor
70 : //
71 0 : }
72 :
73 : //_____________________________________________________________________________
74 : AliPMDv0::AliPMDv0(const char *name, const char *title):
75 0 : AliPMD(name,title),
76 0 : fSMthick(0.),
77 0 : fSMLength(0.),
78 0 : fMedSens(0),
79 0 : fNcellSM(0)
80 0 : {
81 : //
82 : // Standard constructor
83 : //
84 0 : }
85 :
86 : //_____________________________________________________________________________
87 : void AliPMDv0::CreateGeometry()
88 : {
89 : //
90 : // Create geometry for Photon Multiplicity Detector Version 3 :
91 : // April 2, 2001
92 : //
93 : //Begin_Html
94 : /*
95 : <img src="picts/AliPMDv0.gif">
96 : */
97 : //End_Html
98 : //Begin_Html
99 : /*
100 : <img src="picts/AliPMDv0Tree.gif">
101 : */
102 : //End_Html
103 0 : GetParameters();
104 0 : CreateSupermodule();
105 0 : CreatePMD();
106 0 : }
107 :
108 : //_____________________________________________________________________________
109 : void AliPMDv0::CreateSupermodule()
110 : {
111 : //
112 : // Creates the geometry of the cells, places them in supermodule which
113 : // is a rhombus object.
114 :
115 : // *** DEFINITION OF THE GEOMETRY OF THE PMD ***
116 : // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
117 : // -- Author : S. Chattopadhyay, 02/04/1999.
118 :
119 : // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another
120 : // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
121 : // in radius gives the dimension of half width of each cell wall.
122 : // These cells are placed as 72 x 72 array in a
123 : // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
124 : // to have closed packed structure.
125 : //
126 : // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
127 : // EAIR --> Air gap between gas hexagonal cells and G10 backing.
128 : // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
129 : // EAIR --> Air gap between gas hexagonal cells and G10 backing.
130 : //
131 : // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter)
132 : // and EMFE (iron support)
133 :
134 : // EMM1 made of
135 : // ESMB --> Normal supermodule, mirror image of ESMA
136 : // EMPB --> Pb converter
137 : // EMFE --> Fe backing
138 : // ESMA --> Normal supermodule
139 : //
140 : // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter)
141 : // and EMFE (iron support)
142 :
143 : // EMM2 made of
144 : // ESMY --> Special supermodule, mirror image of ESMX,
145 : // EMPB --> Pb converter
146 : // EMFE --> Fe backing
147 : // ESMX --> First of the two Special supermodules near the hole
148 :
149 : // EMM3 made of
150 : // ESMQ --> Special supermodule, mirror image of ESMX,
151 : // EMPB --> Pb converter
152 : // EMFE --> Fe backing
153 : // ESMP --> Second of the two Special supermodules near the hole
154 :
155 : // EMM2 and EMM3 are used to create the hexagonal HOLE
156 :
157 : //
158 : // EPMD
159 : // |
160 : // |
161 : // ---------------------------------------------------------------------------
162 : // | | | | |
163 : // EHOL EMM1 EMM2 EMM3 EALM
164 : // | | |
165 : // -------------------- -------------------- --------------------
166 : // | | | | | | | | | | | |
167 : // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP
168 : // | | |
169 : // ------------ ------------ -------------
170 : // | | | | | | | | |
171 : // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR
172 : // | | |
173 : // ECCU ECCU ECCU
174 : // | | |
175 : // ECAR ECAR ECAR
176 :
177 :
178 : Int_t i, j;
179 : Float_t xb, yb, zb;
180 : Int_t number;
181 0 : Int_t ihrotm,irotdm;
182 0 : Int_t *idtmed = fIdtmed->GetArray()-599;
183 :
184 0 : AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.);
185 0 : AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.);
186 :
187 : //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
188 : // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension
189 : //(1mm tolerance on both side and 5mm thick G10 wall)
190 : //
191 : // **** CELL SIZE 20 mm^2 EQUIVALENT
192 : // Inner hexagon filled with gas (Ar+CO2)
193 :
194 0 : Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
195 :
196 0 : hexd2[4]= -fgkCellDepth/2.;
197 0 : hexd2[7]= fgkCellDepth/2.;
198 0 : hexd2[6]= fgkCellRadius - fgkCellWall;
199 0 : hexd2[9]= fgkCellRadius - fgkCellWall;
200 :
201 : // Gas replaced by vacuum for v0(insensitive) version of PMD.
202 :
203 0 : TVirtualMC::GetMC()->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
204 0 : gGeoManager->SetVolumeAttribute("ECAR", "SEEN", 0);
205 :
206 : // Outer hexagon made of Copper
207 :
208 0 : Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
209 :
210 0 : hexd1[4]= -fgkCellDepth/2.;
211 0 : hexd1[7]= fgkCellDepth/2.;
212 0 : hexd1[6]= fgkCellRadius;
213 0 : hexd1[9]= fgkCellRadius;
214 :
215 0 : TVirtualMC::GetMC()->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
216 0 : gGeoManager->SetVolumeAttribute("ECCU", "SEEN", 1);
217 :
218 : // --- place inner hex inside outer hex
219 :
220 0 : TVirtualMC::GetMC()->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
221 :
222 : // Rhombus shaped supermodules (defined by PARA)
223 :
224 : // volume for SUPERMODULE
225 :
226 0 : Float_t dparasm1[6] = {12.5,12.5,0.8,30.,0.,0.};
227 0 : dparasm1[0] = (fNcellSM+0.25)*hexd1[6] ;
228 0 : dparasm1[1] = dparasm1[0] *fgkSqroot3by2;
229 0 : dparasm1[2] = fSMthick/2.;
230 :
231 : //
232 0 : TVirtualMC::GetMC()->Gsvolu("ESMA","PARA", idtmed[607], dparasm1, 6);
233 0 : gGeoManager->SetVolumeAttribute("ESMA", "SEEN", 0);
234 : //
235 0 : TVirtualMC::GetMC()->Gsvolu("ESMB","PARA", idtmed[607], dparasm1, 6);
236 0 : gGeoManager->SetVolumeAttribute("ESMB", "SEEN", 0);
237 :
238 : // Air residing between the PCB and the base
239 :
240 0 : Float_t dparaair[6] = {12.5,12.5,8.,30.,0.,0.};
241 0 : dparaair[0]= dparasm1[0];
242 0 : dparaair[1]= dparasm1[1];
243 0 : dparaair[2]= fgkThAir/2.;
244 :
245 0 : TVirtualMC::GetMC()->Gsvolu("EAIR","PARA", idtmed[698], dparaair, 6);
246 0 : gGeoManager->SetVolumeAttribute("EAIR", "SEEN", 0);
247 :
248 : // volume for honeycomb chamber EHC1
249 :
250 0 : Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
251 0 : dpara1[0] = dparasm1[0];
252 0 : dpara1[1] = dparasm1[1];
253 0 : dpara1[2] = fgkCellDepth/2.;
254 :
255 0 : TVirtualMC::GetMC()->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
256 0 : gGeoManager->SetVolumeAttribute("EHC1", "SEEN", 1);
257 :
258 : // Place hexagonal cells ECCU cells inside EHC1 (72 X 72)
259 :
260 : Int_t xrow = 1;
261 :
262 0 : yb = -dpara1[1] + (1./fgkSqroot3by2)*hexd1[6];
263 : zb = 0.;
264 :
265 0 : for (j = 1; j <= fNcellSM; ++j) {
266 0 : xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
267 0 : if(xrow >= 2){
268 0 : xb = xb+(xrow-1)*hexd1[6];
269 0 : }
270 0 : for (i = 1; i <= fNcellSM; ++i) {
271 0 : number = i+(j-1)*fNcellSM;
272 0 : TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY");
273 0 : xb += (hexd1[6]*2.);
274 : }
275 0 : xrow = xrow+1;
276 0 : yb += (hexd1[6]*fgkSqroot3);
277 : }
278 :
279 :
280 : // Place EHC1 and EAIR into ESMA and ESMB
281 :
282 : Float_t zAir1,zAir2,zGas;
283 :
284 : //ESMA is normal supermodule with base at bottom, with EHC1
285 0 : zAir1= -dparasm1[2] + fgkThBase + dparaair[2];
286 0 : TVirtualMC::GetMC()->Gspos("EAIR", 1, "ESMA", 0., 0., zAir1, 0, "ONLY");
287 0 : zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2];
288 : //Line below Commented for version 0 of PMD routine
289 : // TVirtualMC::GetMC()->Gspos("EHC1", 1, "ESMA", 0., 0., zGas, 0, "ONLY");
290 0 : zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2];
291 0 : TVirtualMC::GetMC()->Gspos("EAIR", 2, "ESMA", 0., 0., zAir2, 0, "ONLY");
292 :
293 : // ESMB is mirror image of ESMA, with base at top, with EHC1
294 :
295 0 : zAir1= -dparasm1[2] + fgkThPCB + dparaair[2];
296 0 : TVirtualMC::GetMC()->Gspos("EAIR", 3, "ESMB", 0., 0., zAir1, 0, "ONLY");
297 0 : zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2];
298 : //Line below Commented for version 0 of PMD routine
299 : // TVirtualMC::GetMC()->Gspos("EHC1", 2, "ESMB", 0., 0., zGas, 0, "ONLY");
300 0 : zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2];
301 0 : TVirtualMC::GetMC()->Gspos("EAIR", 4, "ESMB", 0., 0., zAir2, 0, "ONLY");
302 :
303 :
304 : // special supermodule EMM2(GEANT only) containing 6 unit modules
305 : // volume for SUPERMODULE
306 :
307 0 : Float_t dparasm2[6] = {12.5,12.5,0.8,30.,0.,0.};
308 0 : dparasm2[0]=(fNcellSM+0.25)*hexd1[6] ;
309 0 : dparasm2[1] = (fNcellSM - fgkNcellHole + 0.25) * fgkSqroot3by2 * hexd1[6];
310 0 : dparasm2[2] = fSMthick/2.;
311 :
312 0 : TVirtualMC::GetMC()->Gsvolu("ESMX","PARA", idtmed[607], dparasm2, 6);
313 0 : gGeoManager->SetVolumeAttribute("ESMX", "SEEN", 0);
314 : //
315 0 : TVirtualMC::GetMC()->Gsvolu("ESMY","PARA", idtmed[607], dparasm2, 6);
316 0 : gGeoManager->SetVolumeAttribute("ESMY", "SEEN", 0);
317 :
318 0 : Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
319 0 : dpara2[0] = dparasm2[0];
320 0 : dpara2[1] = dparasm2[1];
321 0 : dpara2[2] = fgkCellDepth/2.;
322 :
323 0 : TVirtualMC::GetMC()->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
324 0 : gGeoManager->SetVolumeAttribute("EHC2", "SEEN", 1);
325 :
326 :
327 : // Air residing between the PCB and the base
328 :
329 0 : Float_t dpara2Air[6] = {12.5,12.5,8.,30.,0.,0.};
330 0 : dpara2Air[0]= dparasm2[0];
331 0 : dpara2Air[1]= dparasm2[1];
332 0 : dpara2Air[2]= fgkThAir/2.;
333 :
334 0 : TVirtualMC::GetMC()->Gsvolu("EAIX","PARA", idtmed[698], dpara2Air, 6);
335 0 : gGeoManager->SetVolumeAttribute("EAIX", "SEEN", 0);
336 :
337 : // Place hexagonal single cells ECCU inside EHC2
338 : // skip cells which go into the hole in top left corner.
339 :
340 : xrow=1;
341 0 : yb = -dpara2[1] + (1./fgkSqroot3by2)*hexd1[6];
342 : zb = 0.;
343 0 : for (j = 1; j <= (fNcellSM - fgkNcellHole); ++j) {
344 0 : xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
345 0 : if(xrow >= 2){
346 0 : xb = xb+(xrow-1)*hexd1[6];
347 0 : }
348 0 : for (i = 1; i <= fNcellSM; ++i) {
349 0 : number = i+(j-1)*fNcellSM;
350 0 : TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY");
351 0 : xb += (hexd1[6]*2.);
352 : }
353 0 : xrow = xrow+1;
354 0 : yb += (hexd1[6]*fgkSqroot3);
355 : }
356 :
357 :
358 : // ESMX is normal supermodule with base at bottom, with EHC2
359 :
360 0 : zAir1= -dparasm2[2] + fgkThBase + dpara2Air[2];
361 0 : TVirtualMC::GetMC()->Gspos("EAIX", 1, "ESMX", 0., 0., zAir1, 0, "ONLY");
362 0 : zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2];
363 : //Line below Commented for version 0 of PMD routine
364 : // TVirtualMC::GetMC()->Gspos("EHC2", 1, "ESMX", 0., 0., zGas, 0, "ONLY");
365 0 : zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2];
366 0 : TVirtualMC::GetMC()->Gspos("EAIX", 2, "ESMX", 0., 0., zAir2, 0, "ONLY");
367 :
368 : // ESMY is mirror image of ESMX with base at bottom, with EHC2
369 :
370 0 : zAir1= -dparasm2[2] + fgkThPCB + dpara2Air[2];
371 0 : TVirtualMC::GetMC()->Gspos("EAIX", 3, "ESMY", 0., 0., zAir1, 0, "ONLY");
372 0 : zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2];
373 : //Line below Commented for version 0 of PMD routine
374 : // TVirtualMC::GetMC()->Gspos("EHC2", 2, "ESMY", 0., 0., zGas, 0, "ONLY");
375 0 : zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2];
376 0 : TVirtualMC::GetMC()->Gspos("EAIX", 4, "ESMY", 0., 0., zAir2, 0, "ONLY");
377 :
378 : //
379 : // special supermodule EMM3 (GEANT only) containing 2 unit modules
380 : // volume for SUPERMODULE
381 : //
382 0 : Float_t dparaSM3[6] = {12.5,12.5,0.8,30.,0.,0.};
383 0 : dparaSM3[0]=(fNcellSM - fgkNcellHole +0.25)*hexd1[6] ;
384 0 : dparaSM3[1] = (fgkNcellHole + 0.25) * hexd1[6] * fgkSqroot3by2;
385 0 : dparaSM3[2] = fSMthick/2.;
386 :
387 0 : TVirtualMC::GetMC()->Gsvolu("ESMP","PARA", idtmed[607], dparaSM3, 6);
388 0 : gGeoManager->SetVolumeAttribute("ESMP", "SEEN", 0);
389 : //
390 0 : TVirtualMC::GetMC()->Gsvolu("ESMQ","PARA", idtmed[607], dparaSM3, 6);
391 0 : gGeoManager->SetVolumeAttribute("ESMQ", "SEEN", 0);
392 :
393 0 : Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
394 0 : dpara3[0] = dparaSM3[0];
395 0 : dpara3[1] = dparaSM3[1];
396 0 : dpara3[2] = fgkCellDepth/2.;
397 :
398 0 : TVirtualMC::GetMC()->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
399 0 : gGeoManager->SetVolumeAttribute("EHC3", "SEEN", 1);
400 :
401 : // Air residing between the PCB and the base
402 :
403 0 : Float_t dpara3Air[6] = {12.5,12.5,8.,30.,0.,0.};
404 0 : dpara3Air[0]= dparaSM3[0];
405 0 : dpara3Air[1]= dparaSM3[1];
406 0 : dpara3Air[2]= fgkThAir/2.;
407 :
408 0 : TVirtualMC::GetMC()->Gsvolu("EAIP","PARA", idtmed[698], dpara3Air, 6);
409 0 : gGeoManager->SetVolumeAttribute("EAIP", "SEEN", 0);
410 :
411 :
412 : // Place hexagonal single cells ECCU inside EHC3
413 : // skip cells which go into the hole in top left corner.
414 :
415 : xrow=1;
416 0 : yb = -dpara3[1] + (1./fgkSqroot3by2)*hexd1[6];
417 : zb = 0.;
418 0 : for (j = 1; j <= fgkNcellHole; ++j) {
419 0 : xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
420 0 : if(xrow >= 2){
421 0 : xb = xb+(xrow-1)*hexd1[6];
422 0 : }
423 0 : for (i = 1; i <= (fNcellSM - fgkNcellHole); ++i) {
424 0 : number = i+(j-1)*(fNcellSM - fgkNcellHole);
425 0 : TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY");
426 0 : xb += (hexd1[6]*2.);
427 : }
428 0 : xrow = xrow+1;
429 0 : yb += (hexd1[6]*fgkSqroot3);
430 : }
431 :
432 : // ESMP is normal supermodule with base at bottom, with EHC3
433 :
434 0 : zAir1= -dparaSM3[2] + fgkThBase + dpara3Air[2];
435 0 : TVirtualMC::GetMC()->Gspos("EAIP", 1, "ESMP", 0., 0., zAir1, 0, "ONLY");
436 0 : zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2];
437 : //Line below Commented for version 0 of PMD routine
438 : // TVirtualMC::GetMC()->Gspos("EHC3", 1, "ESMP", 0., 0., zGas, 0, "ONLY");
439 0 : zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2];
440 0 : TVirtualMC::GetMC()->Gspos("EAIP", 2, "ESMP", 0., 0., zAir2, 0, "ONLY");
441 :
442 : // ESMQ is mirror image of ESMP with base at bottom, with EHC3
443 :
444 0 : zAir1= -dparaSM3[2] + fgkThPCB + dpara3Air[2];
445 0 : TVirtualMC::GetMC()->Gspos("EAIP", 3, "ESMQ", 0., 0., zAir1, 0, "ONLY");
446 0 : zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2];
447 : //Line below Commented for version 0 of PMD routine
448 : // TVirtualMC::GetMC()->Gspos("EHC3", 2, "ESMQ", 0., 0., zGas, 0, "ONLY");
449 0 : zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2];
450 0 : TVirtualMC::GetMC()->Gspos("EAIP", 4, "ESMQ", 0., 0., zAir2, 0, "ONLY");
451 :
452 0 : }
453 :
454 : //_____________________________________________________________________________
455 :
456 : void AliPMDv0::CreatePMD()
457 : {
458 : //
459 : // Create final detector from supermodules
460 : //
461 : // -- Author : Y.P. VIYOGI, 07/05/1996.
462 : // -- Modified: P.V.K.S.Baba(JU), 15-12-97.
463 : // -- Modified: For New Geometry YPV, March 2001.
464 :
465 : Float_t xp, yp, zp;
466 : Int_t i,j;
467 : Int_t nummod;
468 0 : Int_t jhrot12,jhrot13, irotdm;
469 0 : Int_t *idtmed = fIdtmed->GetArray()-599;
470 :
471 : // VOLUMES Names : begining with "E" for all PMD volumes,
472 : // The names of SIZE variables begin with S and have more meaningful
473 : // characters as shown below.
474 : // VOLUME SIZE MEDIUM : REMARKS
475 : // ------ ----- ------ : ---------------------------
476 : // EPMD GASPMD AIR : INSIDE PMD and its SIZE
477 : // *** Define the EPMD Volume and fill with air ***
478 : // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
479 :
480 :
481 0 : Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
482 :
483 0 : gaspmd[5] = fgkNcellHole * fgkCellRadius * 2. * fgkSqroot3by2;
484 0 : gaspmd[8] = gaspmd[5];
485 :
486 0 : TVirtualMC::GetMC()->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
487 0 : gGeoManager->SetVolumeAttribute("EPMD", "SEEN", 0);
488 :
489 0 : AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.);
490 :
491 0 : AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
492 0 : AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
493 :
494 :
495 0 : Float_t dmthick = 2. * fSMthick + fgkThLead + fgkThSteel;
496 :
497 : // dparaemm1 array contains parameters of the imaginary volume EMM1,
498 : // EMM1 is a master module of type 1, which has 24 copies in the PMD.
499 : // EMM1 : normal volume as in old cases
500 :
501 :
502 0 : Float_t dparaemm1[6] = {12.5,12.5,0.8,30.,0.,0.};
503 0 : dparaemm1[0] = fSMLength/2.;
504 0 : dparaemm1[1] = dparaemm1[0] *fgkSqroot3by2;
505 0 : dparaemm1[2] = dmthick/2.;
506 :
507 0 : TVirtualMC::GetMC()->Gsvolu("EMM1","PARA", idtmed[698], dparaemm1, 6);
508 0 : gGeoManager->SetVolumeAttribute("EMM1", "SEEN", 1);
509 :
510 : //
511 : // --- DEFINE Modules, iron, and lead volumes
512 : // Pb Convertor for EMM1
513 :
514 0 : Float_t dparapb1[6] = {12.5,12.5,8.,30.,0.,0.};
515 0 : dparapb1[0] = fSMLength/2.;
516 0 : dparapb1[1] = dparapb1[0] * fgkSqroot3by2;
517 0 : dparapb1[2] = fgkThLead/2.;
518 :
519 0 : TVirtualMC::GetMC()->Gsvolu("EPB1","PARA", idtmed[600], dparapb1, 6);
520 0 : gGeoManager->SetVolumeAttribute ("EPB1", "SEEN", 0);
521 :
522 : // Fe Support for EMM1
523 0 : Float_t dparafe1[6] = {12.5,12.5,8.,30.,0.,0.};
524 0 : dparafe1[0] = dparapb1[0];
525 0 : dparafe1[1] = dparapb1[1];
526 0 : dparafe1[2] = fgkThSteel/2.;
527 :
528 0 : TVirtualMC::GetMC()->Gsvolu("EFE1","PARA", idtmed[618], dparafe1, 6);
529 0 : gGeoManager->SetVolumeAttribute ("EFE1", "SEEN", 0);
530 :
531 : //
532 : // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
533 :
534 : Float_t zps,zpb,zfe,zcv;
535 :
536 0 : zps = -dparaemm1[2] + fSMthick/2.;
537 0 : TVirtualMC::GetMC()->Gspos("ESMB", 1, "EMM1", 0., 0., zps, 0, "ONLY");
538 0 : zpb = zps+fSMthick/2.+dparapb1[2];
539 0 : TVirtualMC::GetMC()->Gspos("EPB1", 1, "EMM1", 0., 0., zpb, 0, "ONLY");
540 0 : zfe = zpb+dparapb1[2]+dparafe1[2];
541 0 : TVirtualMC::GetMC()->Gspos("EFE1", 1, "EMM1", 0., 0., zfe, 0, "ONLY");
542 0 : zcv = zfe+dparafe1[2]+fSMthick/2.;
543 0 : TVirtualMC::GetMC()->Gspos("ESMA", 1, "EMM1", 0., 0., zcv, 0, "ONLY");
544 :
545 : // EMM2 : special master module having full row of cells but the number
546 : // of rows limited by hole.
547 :
548 0 : Float_t dparaemm2[6] = {12.5,12.5,0.8,30.,0.,0.};
549 0 : dparaemm2[0] = fSMLength/2.;
550 0 : dparaemm2[1] = (fNcellSM - fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2;
551 0 : dparaemm2[2] = dmthick/2.;
552 :
553 0 : TVirtualMC::GetMC()->Gsvolu("EMM2","PARA", idtmed[698], dparaemm2, 6);
554 0 : gGeoManager->SetVolumeAttribute("EMM2", "SEEN", 1);
555 :
556 : // Pb Convertor for EMM2
557 0 : Float_t dparapb2[6] = {12.5,12.5,8.,30.,0.,0.};
558 0 : dparapb2[0] = dparaemm2[0];
559 0 : dparapb2[1] = dparaemm2[1];
560 0 : dparapb2[2] = fgkThLead/2.;
561 :
562 0 : TVirtualMC::GetMC()->Gsvolu("EPB2","PARA", idtmed[600], dparapb2, 6);
563 0 : gGeoManager->SetVolumeAttribute ("EPB2", "SEEN", 0);
564 :
565 : // Fe Support for EMM2
566 0 : Float_t dparafe2[6] = {12.5,12.5,8.,30.,0.,0.};
567 0 : dparafe2[0] = dparapb2[0];
568 0 : dparafe2[1] = dparapb2[1];
569 0 : dparafe2[2] = fgkThSteel/2.;
570 :
571 0 : TVirtualMC::GetMC()->Gsvolu("EFE2","PARA", idtmed[618], dparafe2, 6);
572 0 : gGeoManager->SetVolumeAttribute ("EFE2", "SEEN", 0);
573 :
574 : // position supermodule ESMX, ESMY inside EMM2
575 :
576 0 : zps = -dparaemm2[2] + fSMthick/2.;
577 0 : TVirtualMC::GetMC()->Gspos("ESMY", 1, "EMM2", 0., 0., zps, 0, "ONLY");
578 0 : zpb = zps + fSMthick/2.+dparapb2[2];
579 0 : TVirtualMC::GetMC()->Gspos("EPB2", 1, "EMM2", 0., 0., zpb, 0, "ONLY");
580 0 : zfe = zpb + dparapb2[2]+dparafe2[2];
581 0 : TVirtualMC::GetMC()->Gspos("EFE2", 1, "EMM2", 0., 0., zfe, 0, "ONLY");
582 0 : zcv = zfe + dparafe2[2]+fSMthick/2.;
583 0 : TVirtualMC::GetMC()->Gspos("ESMX", 1, "EMM2", 0., 0., zcv, 0, "ONLY");
584 : //
585 : // EMM3 : special master module having truncated rows and columns of cells
586 : // limited by hole.
587 :
588 0 : Float_t dparaemm3[6] = {12.5,12.5,0.8,30.,0.,0.};
589 0 : dparaemm3[0] = dparaemm2[1]/fgkSqroot3by2;
590 0 : dparaemm3[1] = (fgkNcellHole + 0.25) * fgkCellRadius *fgkSqroot3by2;
591 0 : dparaemm3[2] = dmthick/2.;
592 :
593 0 : TVirtualMC::GetMC()->Gsvolu("EMM3","PARA", idtmed[698], dparaemm3, 6);
594 0 : gGeoManager->SetVolumeAttribute("EMM3", "SEEN", 1);
595 :
596 : // Pb Convertor for EMM3
597 0 : Float_t dparapb3[6] = {12.5,12.5,8.,30.,0.,0.};
598 0 : dparapb3[0] = dparaemm3[0];
599 0 : dparapb3[1] = dparaemm3[1];
600 0 : dparapb3[2] = fgkThLead/2.;
601 :
602 0 : TVirtualMC::GetMC()->Gsvolu("EPB3","PARA", idtmed[600], dparapb3, 6);
603 0 : gGeoManager->SetVolumeAttribute ("EPB3", "SEEN", 0);
604 :
605 : // Fe Support for EMM3
606 0 : Float_t dparafe3[6] = {12.5,12.5,8.,30.,0.,0.};
607 0 : dparafe3[0] = dparapb3[0];
608 0 : dparafe3[1] = dparapb3[1];
609 0 : dparafe3[2] = fgkThSteel/2.;
610 :
611 0 : TVirtualMC::GetMC()->Gsvolu("EFE3","PARA", idtmed[618], dparafe3, 6);
612 0 : gGeoManager->SetVolumeAttribute ("EFE3", "SEEN", 0);
613 :
614 : // position supermodule ESMP, ESMQ inside EMM3
615 :
616 0 : zps = -dparaemm3[2] + fSMthick/2.;
617 0 : TVirtualMC::GetMC()->Gspos("ESMQ", 1, "EMM3", 0., 0., zps, 0, "ONLY");
618 0 : zpb = zps + fSMthick/2.+dparapb3[2];
619 0 : TVirtualMC::GetMC()->Gspos("EPB3", 1, "EMM3", 0., 0., zpb, 0, "ONLY");
620 0 : zfe = zpb + dparapb3[2]+dparafe3[2];
621 0 : TVirtualMC::GetMC()->Gspos("EFE3", 1, "EMM3", 0., 0., zfe, 0, "ONLY");
622 0 : zcv = zfe + dparafe3[2] + fSMthick/2.;
623 0 : TVirtualMC::GetMC()->Gspos("ESMP", 1, "EMM3", 0., 0., zcv, 0, "ONLY");
624 : //
625 :
626 : // EHOL is a tube structure made of air
627 : //
628 : //Float_t d_hole[3];
629 : //d_hole[0] = 0.;
630 : //d_hole[1] = fgkNcellHole * fgkCellRadius *2. * fgkSqroot3by2 + boundary;
631 : //d_hole[2] = dmthick/2.;
632 : //
633 : //TVirtualMC::GetMC()->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
634 : //gGeoManager->SetVolumeAttribute("EHOL", "SEEN", 1);
635 :
636 : //Al-rod as boundary of the supermodules
637 :
638 0 : Float_t alRod[3] ;
639 0 : alRod[0] = fSMLength * 3/2. - gaspmd[5]/2 - fgkBoundary ;
640 0 : alRod[1] = fgkBoundary;
641 0 : alRod[2] = dmthick/2.;
642 :
643 0 : TVirtualMC::GetMC()->Gsvolu("EALM","BOX ", idtmed[698], alRod, 3);
644 0 : gGeoManager->SetVolumeAttribute ("EALM", "SEEN", 1);
645 0 : Float_t xalm[3];
646 0 : xalm[0]=alRod[0] + gaspmd[5] + 3.0*fgkBoundary;
647 0 : xalm[1]=-xalm[0]/2.;
648 0 : xalm[2]=xalm[1];
649 :
650 0 : Float_t yalm[3];
651 0 : yalm[0]=0.;
652 0 : yalm[1]=xalm[0]*fgkSqroot3by2;
653 0 : yalm[2]=-yalm[1];
654 :
655 : // delx = full side of the supermodule
656 0 : Float_t delx=fSMLength * 3.;
657 0 : Float_t x1= delx*fgkSqroot3by2 /2.;
658 0 : Float_t x4=delx/4.;
659 :
660 : // placing master modules and Al-rod in PMD
661 :
662 : Float_t dx = fSMLength;
663 0 : Float_t dy = dx * fgkSqroot3by2;
664 0 : Float_t xsup[9] = {static_cast<Float_t>(-dx/2.), static_cast<Float_t>(dx/2.), static_cast<Float_t>(3.*dx/2.),
665 : -dx, 0., dx,
666 0 : static_cast<Float_t>(-3.*dx/2.), static_cast<Float_t>(-dx/2.), static_cast<Float_t>(dx/2.)};
667 :
668 0 : Float_t ysup[9] = {dy, dy, dy,
669 : 0., 0., 0.,
670 0 : -dy, -dy, -dy};
671 :
672 : // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
673 :
674 0 : Float_t xoff = fgkBoundary * TMath::Tan(fgkPi/6.);
675 0 : Float_t xmod[3]={x4 + xoff , x4 + xoff, static_cast<Float_t>(-2.*x4-fgkBoundary/fgkSqroot3by2)};
676 0 : Float_t ymod[3] = {-x1 - fgkBoundary, x1 + fgkBoundary, 0.};
677 0 : Float_t xpos[9], ypos[9], x2, y2, x3, y3;
678 :
679 0 : Float_t xemm2 = fSMLength/2. -
680 0 : (fNcellSM + fgkNcellHole + 0.25) * fgkCellRadius * 0.5
681 0 : + xoff;
682 0 : Float_t yemm2 = -(fNcellSM + fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2
683 0 : - fgkBoundary;
684 :
685 0 : Float_t xemm3 = (fNcellSM + 0.5 * fgkNcellHole + 0.25) * fgkCellRadius +
686 : xoff;
687 : Float_t yemm3 = - (fgkNcellHole - 0.25) * fgkCellRadius * fgkSqroot3by2 -
688 : fgkBoundary;
689 :
690 0 : Float_t theta[3] = {0., static_cast<Float_t>(2.*fgkPi/3.), static_cast<Float_t>(4.*fgkPi/3.)};
691 0 : Int_t irotate[3] = {0, jhrot12, jhrot13};
692 :
693 : nummod=0;
694 0 : for (j=0; j<3; ++j) {
695 0 : TVirtualMC::GetMC()->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY");
696 0 : x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
697 0 : y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
698 :
699 0 : TVirtualMC::GetMC()->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY");
700 :
701 0 : x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
702 0 : y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
703 :
704 0 : TVirtualMC::GetMC()->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY");
705 :
706 0 : for (i=1; i<9; ++i) {
707 0 : xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) -
708 0 : ysup[i]*TMath::Sin(theta[j]);
709 0 : ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) +
710 0 : ysup[i]*TMath::Cos(theta[j]);
711 :
712 0 : AliDebugClass(1,Form("xpos: %f, ypos: %f", xpos[i], ypos[i]));
713 :
714 0 : nummod = nummod+1;
715 :
716 0 : AliDebugClass(1,Form("nummod %d",nummod));
717 :
718 0 : TVirtualMC::GetMC()->Gspos("EMM1", nummod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY");
719 :
720 : }
721 : }
722 :
723 :
724 : // place EHOL in the centre of EPMD
725 : // TVirtualMC::GetMC()->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
726 :
727 : // --- Place the EPMD in ALICE
728 : xp = 0.;
729 : yp = 0.;
730 : zp = fgkZdist;
731 :
732 0 : TVirtualMC::GetMC()->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
733 :
734 0 : }
735 :
736 :
737 : //_____________________________________________________________________________
738 : void AliPMDv0::CreateMaterials()
739 : {
740 : //
741 : // Create materials for the PMD
742 : //
743 : // ORIGIN : Y. P. VIYOGI
744 : //
745 :
746 : // cout << " Inside create materials " << endl;
747 :
748 0 : Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ();
749 0 : Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max();
750 :
751 : // --- Define the various materials for GEANT ---
752 :
753 0 : AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5);
754 :
755 : // Argon
756 :
757 : Float_t dAr = 0.001782; // --- Ar density in g/cm3 ---
758 0 : Float_t x0Ar = 19.55 / dAr;
759 0 : AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4);
760 :
761 : // --- CO2 ---
762 :
763 0 : Float_t aCO2[2] = { 12.,16. };
764 0 : Float_t zCO2[2] = { 6.,8. };
765 0 : Float_t wCO2[2] = { 1.,2. };
766 : Float_t dCO2 = 0.001977;
767 0 : AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2);
768 :
769 0 : AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5);
770 :
771 : // ArCO2
772 :
773 0 : Float_t aArCO2[3] = {39.948,12.0107,15.9994};
774 0 : Float_t zArCO2[3] = {18.,6.,8.};
775 0 : Float_t wArCO2[3] = {0.7,0.08,0.22};
776 : Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3;
777 0 : AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2);
778 :
779 0 : AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5);
780 :
781 : // G10
782 :
783 0 : Float_t aG10[4]={1.,12.011,15.9994,28.086};
784 0 : Float_t zG10[4]={1.,6.,8.,14.};
785 : //PH Float_t wG10[4]={0.148648649,0.104054054,0.483499056,0.241666667};
786 0 : Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714};
787 0 : AliMixture(8,"G10",aG10,zG10,1.7,4,wG10);
788 :
789 0 : AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.);
790 :
791 : // Steel
792 0 : Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 };
793 0 : Float_t zSteel[4] = { 26.,24.,28.,14. };
794 0 : Float_t wSteel[4] = { .715,.18,.1,.005 };
795 : Float_t dSteel = 7.88;
796 0 : AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel);
797 :
798 : //Air
799 :
800 0 : Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
801 0 : Float_t zAir[4]={6.,7.,8.,18.};
802 0 : Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
803 : Float_t dAir1 = 1.20479E-10;
804 : Float_t dAir = 1.20479E-3;
805 0 : AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir);
806 0 : AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir);
807 :
808 : // Define tracking media
809 0 : AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
810 0 : AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
811 0 : AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1);
812 0 : AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
813 0 : AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
814 0 : AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
815 0 : AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
816 0 : AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10);
817 0 : AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1);
818 :
819 0 : }
820 :
821 : //_____________________________________________________________________________
822 : void AliPMDv0::Init()
823 : {
824 : //
825 : // Initialises PMD detector after it has been built
826 : //
827 : Int_t i;
828 : // kdet=1;
829 : //
830 0 : if(AliLog::GetGlobalDebugLevel()>0) {
831 0 : printf("\n%s: ",ClassName());
832 0 : for(i=0;i<35;i++) printf("*");
833 0 : printf(" PMD_INIT ");
834 0 : for(i=0;i<35;i++) printf("*");
835 0 : printf("\n%s: ",ClassName());
836 0 : printf(" PMD simulation package (v0) initialised\n");
837 0 : printf("%s: parameters of pmd\n", ClassName());
838 0 : printf("%s: %10.2f %10.2f %10.2f \
839 0 : %10.2f\n",ClassName(),fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist );
840 0 : printf("%s: ",ClassName());
841 0 : for(i=0;i<80;i++) printf("*");
842 0 : printf("\n");
843 0 : }
844 0 : Int_t *idtmed = fIdtmed->GetArray()-599;
845 0 : fMedSens=idtmed[605-1];
846 : // --- Generate explicitly delta rays in the iron, aluminium and lead ---
847 : // removed all Gstpar and energy cut-offs moved to galice.cuts
848 0 : }
849 :
850 : //_____________________________________________________________________________
851 : void AliPMDv0::StepManager()
852 : {
853 : //
854 : // Called at each step in the PMD
855 : //
856 0 : Int_t copy;
857 0 : Float_t hits[5], destep;
858 0 : Float_t center[3] = {0,0,0};
859 0 : Int_t vol[6];
860 : //char *namep;
861 :
862 0 : if(TVirtualMC::GetMC()->CurrentMedium() == fMedSens && (destep = TVirtualMC::GetMC()->Edep())) {
863 :
864 0 : TVirtualMC::GetMC()->CurrentVolID(copy);
865 0 : vol[0] = copy;
866 0 : TVirtualMC::GetMC()->CurrentVolOffID(1,copy);
867 0 : vol[1] = copy;
868 0 : TVirtualMC::GetMC()->CurrentVolOffID(2,copy);
869 0 : vol[2] = copy;
870 0 : TVirtualMC::GetMC()->CurrentVolOffID(3,copy);
871 0 : vol[3] = copy;
872 0 : TVirtualMC::GetMC()->CurrentVolOffID(4,copy);
873 0 : vol[4] = copy;
874 0 : TVirtualMC::GetMC()->CurrentVolOffID(5,copy);
875 0 : vol[5] = copy;
876 :
877 0 : TVirtualMC::GetMC()->Gdtom(center,hits,1);
878 0 : hits[3] = destep*1e9; //Number in eV
879 :
880 : // this is for pile-up events
881 0 : hits[4] = TVirtualMC::GetMC()->TrackTime();
882 :
883 0 : AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
884 0 : }
885 0 : }
886 :
887 :
888 : //------------------------------------------------------------------------
889 : // Get parameters
890 :
891 : void AliPMDv0::GetParameters()
892 : {
893 : // This gives all the parameters of the detector
894 : // such as Length of Supermodules
895 : // thickness of the Supermodule
896 : //
897 : Int_t ncellum, numum;
898 : ncellum = 24;
899 : numum = 3;
900 0 : fNcellSM = ncellum * numum; //no. of cells in a row in one supermodule
901 0 : fSMLength = (fNcellSM + 0.25 )*fgkCellRadius*2.;
902 0 : fSMthick = fgkThBase + fgkThAir + fgkThPCB + fgkCellDepth +
903 : fgkThPCB + fgkThAir + fgkThPCB;
904 0 : }
|