LCOV - code coverage report
Current view: top level - PMD/PMDsim - AliPMDv0.cxx (source / functions) Hit Total Coverage
Test: coverage.info Lines: 1 390 0.3 %
Date: 2016-06-14 17:26:59 Functions: 1 12 8.3 %

          Line data    Source code
       1             : /***************************************************************************
       2             :  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
       3             :  *                                                                        *
       4             :  * Author: The ALICE Off-line Project.                                    *
       5             :  * Contributors are mentioned in the code where appropriate.              *
       6             :  *                                                                        *
       7             :  * Permission to use, copy, modify and distribute this software and its   *
       8             :  * documentation strictly for non-commercial purposes is hereby granted   *
       9             :  * without fee, provided that the above copyright notice appears in all   *
      10             :  * copies and that both the copyright notice and this permission notice   *
      11             :  * appear in the supporting documentation. The authors make no claims     *
      12             :  * about the suitability of this software for any purpose. It is          *
      13             :  * provided "as is" without express or implied warranty.                  *
      14             :  **************************************************************************/
      15             : 
      16             : /* $Id$ */
      17             : 
      18             : //
      19             : ///////////////////////////////////////////////////////////////////////////////
      20             : //                                                                           //
      21             : //  Photon Multiplicity Detector Version 1                                   //
      22             : //                                                                           //
      23             : //Begin_Html
      24             : /*
      25             : <img src="picts/AliPMDv0Class.gif">
      26             : */
      27             : //End_Html
      28             : //                                                                           //
      29             : ///////////////////////////////////////////////////////////////////////////////
      30             : ////
      31             : 
      32             : #include <Riostream.h>
      33             : #include <TGeoManager.h>
      34             : #include <TGeoGlobalMagField.h>
      35             : #include <TVirtualMC.h>
      36             : 
      37             : #include "AliConst.h" 
      38             : #include "AliMagF.h" 
      39             : #include "AliPMDv0.h"
      40             : #include "AliRun.h"
      41             : #include "AliMC.h"
      42             : #include "AliLog.h"
      43             : 
      44             : const Int_t   AliPMDv0::fgkNcellHole  = 24;       // Hole dimension
      45             : const Float_t AliPMDv0::fgkCellRadius = 0.25;     // Radius of a hexagonal cell
      46             : const Float_t AliPMDv0::fgkCellWall   = 0.02;     // Thickness of cell Wall
      47             : const Float_t AliPMDv0::fgkCellDepth  = 0.50;     // Gas thickness
      48             : const Float_t AliPMDv0::fgkBoundary   = 0.7;      // Thickness of Boundary wall
      49             : const Float_t AliPMDv0::fgkThBase     = 0.3;      // Thickness of Base plate
      50             : const Float_t AliPMDv0::fgkThAir      = 0.1;      // Thickness of Air
      51             : const Float_t AliPMDv0::fgkThPCB      = 0.16;     // Thickness of PCB
      52             : const Float_t AliPMDv0::fgkThLead     = 1.5;      // Thickness of Pb
      53             : const Float_t AliPMDv0::fgkThSteel    = 0.5;      // Thickness of Steel
      54             : const Float_t AliPMDv0::fgkZdist      = 361.5;    // z-position of the detector
      55             : const Float_t AliPMDv0::fgkSqroot3    = 1.7320508;// Square Root of 3
      56             : const Float_t AliPMDv0::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2
      57             : const Float_t AliPMDv0::fgkPi         = 3.14159;  // pi
      58             : 
      59          12 : ClassImp(AliPMDv0)
      60             :  
      61             : //_____________________________________________________________________________
      62           0 : AliPMDv0::AliPMDv0():
      63           0 :   fSMthick(0.),
      64           0 :   fSMLength(0.),
      65           0 :   fMedSens(0),
      66           0 :   fNcellSM(0)
      67           0 : {
      68             :   //
      69             :   // Default constructor 
      70             :   //
      71           0 : }
      72             :  
      73             : //_____________________________________________________________________________
      74             : AliPMDv0::AliPMDv0(const char *name, const char *title):
      75           0 :   AliPMD(name,title),
      76           0 :   fSMthick(0.),
      77           0 :   fSMLength(0.),
      78           0 :   fMedSens(0),
      79           0 :   fNcellSM(0)
      80           0 : {
      81             :   //
      82             :   // Standard constructor
      83             :   //
      84           0 : }
      85             : 
      86             : //_____________________________________________________________________________
      87             : void AliPMDv0::CreateGeometry()
      88             : {
      89             :   //
      90             :   // Create geometry for Photon Multiplicity Detector Version 3 :
      91             :   // April 2, 2001
      92             :   //
      93             :   //Begin_Html
      94             :   /*
      95             :     <img src="picts/AliPMDv0.gif">
      96             :   */
      97             :   //End_Html
      98             :   //Begin_Html
      99             :   /*
     100             :     <img src="picts/AliPMDv0Tree.gif">
     101             :   */
     102             :   //End_Html
     103           0 :   GetParameters();
     104           0 :   CreateSupermodule();
     105           0 :   CreatePMD();
     106           0 : }
     107             : 
     108             : //_____________________________________________________________________________
     109             : void AliPMDv0::CreateSupermodule()
     110             : {
     111             :   //
     112             :   // Creates the geometry of the cells, places them in  supermodule which
     113             :   // is a rhombus object.
     114             : 
     115             :   // *** DEFINITION OF THE GEOMETRY OF THE PMD  *** 
     116             :   // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters")
     117             :   // -- Author :     S. Chattopadhyay, 02/04/1999. 
     118             : 
     119             :   // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another 
     120             :   // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference
     121             :   // in radius gives the dimension of half width of each cell wall.
     122             :   // These cells are placed as 72 x 72 array in a 
     123             :   // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed
     124             :   // to have closed packed structure.
     125             :   //
     126             :   // Each supermodule (ESMA, ESMB), made of G10 is filled with following components
     127             :   //  EAIR --> Air gap between gas hexagonal cells and G10 backing.
     128             :   //  EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells
     129             :   //  EAIR --> Air gap between gas hexagonal cells and G10 backing.
     130             :   //
     131             :   // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter) 
     132             :   // and EMFE (iron support) 
     133             : 
     134             :   // EMM1 made of
     135             :   //    ESMB --> Normal supermodule, mirror image of ESMA
     136             :   //    EMPB --> Pb converter
     137             :   //    EMFE --> Fe backing
     138             :   //    ESMA --> Normal supermodule
     139             :   //
     140             :   // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter) 
     141             :   // and EMFE (iron support) 
     142             : 
     143             :   // EMM2 made of 
     144             :   //    ESMY --> Special supermodule, mirror image of ESMX, 
     145             :   //    EMPB --> Pb converter
     146             :   //    EMFE --> Fe backing
     147             :   //    ESMX --> First of the two Special supermodules near the hole
     148             : 
     149             :  // EMM3 made of
     150             :   //    ESMQ --> Special supermodule, mirror image of ESMX, 
     151             :   //    EMPB --> Pb converter
     152             :   //    EMFE --> Fe backing
     153             :   //    ESMP --> Second of the two Special supermodules near the hole
     154             :   
     155             :   // EMM2 and EMM3 are used to create the hexagonal  HOLE
     156             : 
     157             :   //
     158             :   //                                 EPMD
     159             :   //                                   |             
     160             :   //                                   |
     161             :   //   ---------------------------------------------------------------------------
     162             :   //   |              |                       |                     |            |
     163             :   //  EHOL           EMM1                    EMM2                  EMM3         EALM
     164             :   //                  |                       |                     |
     165             :   //      --------------------   --------------------      -------------------- 
     166             :   //      |    |      |     |    |     |      |     |      |     |      |     | 
     167             :   //     ESMB  EMPB  EMFE ESMA  ESMY  EMPB  EMFE  ESMX    ESMQ  EMPB  EMFE  ESMP
     168             :   //      |                      |                         |                 
     169             :   //   ------------          ------------             -------------           
     170             :   //  |     |     |         |     |     |             |     |     |           
     171             :   // EAIR EHC1   EAIR      EAIR  EHC2  EAIR          EAIR  EHC3  EAIR          
     172             :   //        |                     |                         |                  
     173             :   //      ECCU                   ECCU                      ECCU                 
     174             :   //       |                      |                         |                  
     175             :   //      ECAR                   ECAR                      ECAR                 
     176             :   
     177             : 
     178             :   Int_t i, j;
     179             :   Float_t xb, yb, zb;
     180             :   Int_t number;
     181           0 :   Int_t ihrotm,irotdm;
     182           0 :   Int_t *idtmed = fIdtmed->GetArray()-599;
     183             :  
     184           0 :   AliMatrix(ihrotm, 90., 30.,   90.,  120., 0., 0.);
     185           0 :   AliMatrix(irotdm, 90., 180.,  90.,  270., 180., 0.);
     186             :  
     187             :   //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu
     188             :   // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension  
     189             :   //(1mm tolerance on both side and 5mm thick G10 wall)
     190             :   // 
     191             :   // **** CELL SIZE 20 mm^2 EQUIVALENT
     192             :   // Inner hexagon filled with gas (Ar+CO2)
     193             : 
     194           0 :   Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23};
     195             : 
     196           0 :   hexd2[4]=  -fgkCellDepth/2.;
     197           0 :   hexd2[7]=   fgkCellDepth/2.;
     198           0 :   hexd2[6]=   fgkCellRadius - fgkCellWall;
     199           0 :   hexd2[9]=   fgkCellRadius - fgkCellWall;
     200             :   
     201             :   // Gas replaced by vacuum for v0(insensitive) version of PMD.
     202             : 
     203           0 :   TVirtualMC::GetMC()->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10);
     204           0 :   gGeoManager->SetVolumeAttribute("ECAR", "SEEN", 0);
     205             :   
     206             :   // Outer hexagon made of Copper
     207             :   
     208           0 :   Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25};
     209             : 
     210           0 :   hexd1[4]=  -fgkCellDepth/2.;
     211           0 :   hexd1[7]=   fgkCellDepth/2.;
     212           0 :   hexd1[6]=   fgkCellRadius;
     213           0 :   hexd1[9]=   fgkCellRadius;
     214             : 
     215           0 :   TVirtualMC::GetMC()->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10);
     216           0 :   gGeoManager->SetVolumeAttribute("ECCU", "SEEN", 1);
     217             : 
     218             :   // --- place  inner hex inside outer hex 
     219             : 
     220           0 :   TVirtualMC::GetMC()->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY");
     221             : 
     222             :   // Rhombus shaped supermodules (defined by PARA) 
     223             :   
     224             :   // volume for SUPERMODULE 
     225             :    
     226           0 :   Float_t dparasm1[6] = {12.5,12.5,0.8,30.,0.,0.};
     227           0 :   dparasm1[0] = (fNcellSM+0.25)*hexd1[6] ;
     228           0 :   dparasm1[1] = dparasm1[0] *fgkSqroot3by2;
     229           0 :   dparasm1[2] = fSMthick/2.;
     230             :   
     231             :   //
     232           0 :   TVirtualMC::GetMC()->Gsvolu("ESMA","PARA", idtmed[607], dparasm1, 6);
     233           0 :   gGeoManager->SetVolumeAttribute("ESMA", "SEEN", 0);
     234             :   //
     235           0 :   TVirtualMC::GetMC()->Gsvolu("ESMB","PARA", idtmed[607], dparasm1, 6);
     236           0 :   gGeoManager->SetVolumeAttribute("ESMB", "SEEN", 0);
     237             :   
     238             :   // Air residing between the PCB and the base
     239             :   
     240           0 :   Float_t dparaair[6] = {12.5,12.5,8.,30.,0.,0.};
     241           0 :   dparaair[0]= dparasm1[0];
     242           0 :   dparaair[1]= dparasm1[1];
     243           0 :   dparaair[2]= fgkThAir/2.;
     244             :   
     245           0 :   TVirtualMC::GetMC()->Gsvolu("EAIR","PARA", idtmed[698], dparaair, 6);
     246           0 :   gGeoManager->SetVolumeAttribute("EAIR", "SEEN", 0);
     247             :   
     248             :   // volume for honeycomb chamber EHC1 
     249             :   
     250           0 :   Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.};
     251           0 :   dpara1[0] = dparasm1[0];
     252           0 :   dpara1[1] = dparasm1[1];
     253           0 :   dpara1[2] = fgkCellDepth/2.;
     254             : 
     255           0 :   TVirtualMC::GetMC()->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6);
     256           0 :   gGeoManager->SetVolumeAttribute("EHC1", "SEEN", 1);
     257             :   
     258             :   // Place hexagonal cells ECCU cells  inside EHC1 (72 X 72)
     259             : 
     260             :   Int_t xrow = 1;
     261             : 
     262           0 :   yb = -dpara1[1] + (1./fgkSqroot3by2)*hexd1[6];
     263             :   zb = 0.;
     264             : 
     265           0 :   for (j = 1; j <= fNcellSM; ++j) {
     266           0 :     xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg)
     267           0 :     if(xrow >= 2){
     268           0 :       xb = xb+(xrow-1)*hexd1[6];
     269           0 :     }
     270           0 :     for (i = 1; i <= fNcellSM; ++i) {
     271           0 :       number = i+(j-1)*fNcellSM;
     272           0 :       TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY");
     273           0 :       xb += (hexd1[6]*2.);
     274             :     }
     275           0 :     xrow = xrow+1;
     276           0 :     yb += (hexd1[6]*fgkSqroot3);
     277             :   }
     278             : 
     279             : 
     280             :   // Place EHC1 and EAIR into  ESMA and ESMB
     281             : 
     282             :   Float_t zAir1,zAir2,zGas; 
     283             : 
     284             :   //ESMA is normal supermodule with base at bottom, with EHC1
     285           0 :   zAir1= -dparasm1[2] + fgkThBase + dparaair[2]; 
     286           0 :   TVirtualMC::GetMC()->Gspos("EAIR", 1, "ESMA", 0., 0., zAir1, 0, "ONLY");
     287           0 :   zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2]; 
     288             :   //Line below Commented for version 0 of PMD routine
     289             :   //  TVirtualMC::GetMC()->Gspos("EHC1", 1, "ESMA", 0., 0., zGas, 0, "ONLY");
     290           0 :   zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2]; 
     291           0 :   TVirtualMC::GetMC()->Gspos("EAIR", 2, "ESMA", 0., 0., zAir2, 0, "ONLY");
     292             : 
     293             :   // ESMB is mirror image of ESMA, with base at top, with EHC1
     294             : 
     295           0 :   zAir1= -dparasm1[2] + fgkThPCB + dparaair[2]; 
     296           0 :   TVirtualMC::GetMC()->Gspos("EAIR", 3, "ESMB", 0., 0., zAir1, 0, "ONLY");
     297           0 :   zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2]; 
     298             :   //Line below Commented for version 0 of PMD routine
     299             :   //  TVirtualMC::GetMC()->Gspos("EHC1", 2, "ESMB", 0., 0., zGas, 0, "ONLY");
     300           0 :   zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2]; 
     301           0 :   TVirtualMC::GetMC()->Gspos("EAIR", 4, "ESMB", 0., 0., zAir2, 0, "ONLY");
     302             : 
     303             : 
     304             :   // special supermodule EMM2(GEANT only) containing 6 unit modules
     305             :   // volume for SUPERMODULE 
     306             : 
     307           0 :   Float_t dparasm2[6] = {12.5,12.5,0.8,30.,0.,0.};
     308           0 :   dparasm2[0]=(fNcellSM+0.25)*hexd1[6] ;
     309           0 :   dparasm2[1] = (fNcellSM - fgkNcellHole + 0.25) * fgkSqroot3by2 * hexd1[6];
     310           0 :   dparasm2[2] = fSMthick/2.;
     311             : 
     312           0 :   TVirtualMC::GetMC()->Gsvolu("ESMX","PARA", idtmed[607], dparasm2, 6);
     313           0 :   gGeoManager->SetVolumeAttribute("ESMX", "SEEN", 0);
     314             :   //
     315           0 :   TVirtualMC::GetMC()->Gsvolu("ESMY","PARA", idtmed[607], dparasm2, 6);
     316           0 :   gGeoManager->SetVolumeAttribute("ESMY", "SEEN", 0);
     317             : 
     318           0 :   Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.};
     319           0 :   dpara2[0] = dparasm2[0];
     320           0 :   dpara2[1] = dparasm2[1];
     321           0 :   dpara2[2] = fgkCellDepth/2.;
     322             : 
     323           0 :   TVirtualMC::GetMC()->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6);
     324           0 :   gGeoManager->SetVolumeAttribute("EHC2", "SEEN", 1);
     325             : 
     326             : 
     327             :   // Air residing between the PCB and the base
     328             : 
     329           0 :   Float_t dpara2Air[6] = {12.5,12.5,8.,30.,0.,0.};
     330           0 :   dpara2Air[0]= dparasm2[0];
     331           0 :   dpara2Air[1]= dparasm2[1];
     332           0 :   dpara2Air[2]= fgkThAir/2.;
     333             : 
     334           0 :   TVirtualMC::GetMC()->Gsvolu("EAIX","PARA", idtmed[698], dpara2Air, 6);
     335           0 :   gGeoManager->SetVolumeAttribute("EAIX", "SEEN", 0);
     336             : 
     337             :   // Place hexagonal single cells ECCU inside EHC2
     338             :   // skip cells which go into the hole in top left corner.
     339             : 
     340             :   xrow=1;
     341           0 :   yb = -dpara2[1] + (1./fgkSqroot3by2)*hexd1[6];
     342             :   zb = 0.;
     343           0 :   for (j = 1; j <= (fNcellSM - fgkNcellHole); ++j) {
     344           0 :     xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6];
     345           0 :     if(xrow >= 2){
     346           0 :       xb = xb+(xrow-1)*hexd1[6];
     347           0 :     }
     348           0 :     for (i = 1; i <= fNcellSM; ++i) {
     349           0 :       number = i+(j-1)*fNcellSM;
     350           0 :             TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY");
     351           0 :       xb += (hexd1[6]*2.);
     352             :     }
     353           0 :     xrow = xrow+1;
     354           0 :     yb += (hexd1[6]*fgkSqroot3);
     355             :   }
     356             : 
     357             : 
     358             :   // ESMX is normal supermodule with base at bottom, with EHC2
     359             :   
     360           0 :   zAir1= -dparasm2[2] + fgkThBase + dpara2Air[2]; 
     361           0 :   TVirtualMC::GetMC()->Gspos("EAIX", 1, "ESMX", 0., 0., zAir1, 0, "ONLY");
     362           0 :   zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2]; 
     363             :   //Line below Commented for version 0 of PMD routine
     364             :   //  TVirtualMC::GetMC()->Gspos("EHC2", 1, "ESMX", 0., 0., zGas, 0, "ONLY");
     365           0 :   zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2]; 
     366           0 :   TVirtualMC::GetMC()->Gspos("EAIX", 2, "ESMX", 0., 0., zAir2, 0, "ONLY");
     367             : 
     368             :   // ESMY is mirror image of ESMX with base at bottom, with EHC2
     369             :   
     370           0 :   zAir1= -dparasm2[2] + fgkThPCB + dpara2Air[2]; 
     371           0 :   TVirtualMC::GetMC()->Gspos("EAIX", 3, "ESMY", 0., 0., zAir1, 0, "ONLY");
     372           0 :   zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2]; 
     373             :   //Line below Commented for version 0 of PMD routine
     374             :   //  TVirtualMC::GetMC()->Gspos("EHC2", 2, "ESMY", 0., 0., zGas, 0, "ONLY");
     375           0 :   zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2]; 
     376           0 :   TVirtualMC::GetMC()->Gspos("EAIX", 4, "ESMY", 0., 0., zAir2, 0, "ONLY");
     377             : 
     378             :   //
     379             :   // special supermodule EMM3 (GEANT only) containing 2 unit modules
     380             :   // volume for SUPERMODULE 
     381             :   //
     382           0 :   Float_t dparaSM3[6] = {12.5,12.5,0.8,30.,0.,0.};
     383           0 :   dparaSM3[0]=(fNcellSM - fgkNcellHole +0.25)*hexd1[6] ;
     384           0 :   dparaSM3[1] = (fgkNcellHole + 0.25) * hexd1[6] * fgkSqroot3by2;
     385           0 :   dparaSM3[2] = fSMthick/2.;
     386             : 
     387           0 :   TVirtualMC::GetMC()->Gsvolu("ESMP","PARA", idtmed[607], dparaSM3, 6);
     388           0 :   gGeoManager->SetVolumeAttribute("ESMP", "SEEN", 0);
     389             :   //
     390           0 :   TVirtualMC::GetMC()->Gsvolu("ESMQ","PARA", idtmed[607], dparaSM3, 6);
     391           0 :   gGeoManager->SetVolumeAttribute("ESMQ", "SEEN", 0);
     392             : 
     393           0 :   Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.};
     394           0 :   dpara3[0] = dparaSM3[0];
     395           0 :   dpara3[1] = dparaSM3[1];
     396           0 :   dpara3[2] = fgkCellDepth/2.;
     397             : 
     398           0 :   TVirtualMC::GetMC()->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6);
     399           0 :   gGeoManager->SetVolumeAttribute("EHC3", "SEEN", 1);
     400             : 
     401             :   // Air residing between the PCB and the base
     402             : 
     403           0 :   Float_t dpara3Air[6] = {12.5,12.5,8.,30.,0.,0.};
     404           0 :   dpara3Air[0]= dparaSM3[0];
     405           0 :   dpara3Air[1]= dparaSM3[1];
     406           0 :   dpara3Air[2]= fgkThAir/2.;
     407             : 
     408           0 :   TVirtualMC::GetMC()->Gsvolu("EAIP","PARA", idtmed[698], dpara3Air, 6);
     409           0 :   gGeoManager->SetVolumeAttribute("EAIP", "SEEN", 0);
     410             : 
     411             : 
     412             :   // Place hexagonal single cells ECCU inside EHC3
     413             :   // skip cells which go into the hole in top left corner.
     414             : 
     415             :   xrow=1;
     416           0 :   yb = -dpara3[1] + (1./fgkSqroot3by2)*hexd1[6];
     417             :   zb = 0.;
     418           0 :   for (j = 1; j <= fgkNcellHole; ++j) {
     419           0 :     xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6];
     420           0 :     if(xrow >= 2){
     421           0 :       xb = xb+(xrow-1)*hexd1[6];
     422           0 :     }
     423           0 :     for (i = 1; i <= (fNcellSM - fgkNcellHole); ++i) {
     424           0 :       number = i+(j-1)*(fNcellSM - fgkNcellHole);
     425           0 :       TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY");
     426           0 :       xb += (hexd1[6]*2.);
     427             :     }
     428           0 :     xrow = xrow+1;
     429           0 :     yb += (hexd1[6]*fgkSqroot3);
     430             :   }
     431             : 
     432             :   // ESMP is normal supermodule with base at bottom, with EHC3
     433             :   
     434           0 :   zAir1= -dparaSM3[2] + fgkThBase + dpara3Air[2]; 
     435           0 :   TVirtualMC::GetMC()->Gspos("EAIP", 1, "ESMP", 0., 0., zAir1, 0, "ONLY");
     436           0 :   zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2]; 
     437             :   //Line below Commented for version 0 of PMD routine
     438             :   //  TVirtualMC::GetMC()->Gspos("EHC3", 1, "ESMP", 0., 0., zGas, 0, "ONLY");
     439           0 :   zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2]; 
     440           0 :   TVirtualMC::GetMC()->Gspos("EAIP", 2, "ESMP", 0., 0., zAir2, 0, "ONLY");
     441             :   
     442             :   // ESMQ is mirror image of ESMP with base at bottom, with EHC3
     443             :   
     444           0 :   zAir1= -dparaSM3[2] + fgkThPCB + dpara3Air[2]; 
     445           0 :   TVirtualMC::GetMC()->Gspos("EAIP", 3, "ESMQ", 0., 0., zAir1, 0, "ONLY");
     446           0 :   zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2]; 
     447             :   //Line below Commented for version 0 of PMD routine
     448             :   //  TVirtualMC::GetMC()->Gspos("EHC3", 2, "ESMQ", 0., 0., zGas, 0, "ONLY");
     449           0 :   zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2]; 
     450           0 :   TVirtualMC::GetMC()->Gspos("EAIP", 4, "ESMQ", 0., 0., zAir2, 0, "ONLY");
     451             :   
     452           0 : }
     453             : 
     454             : //_____________________________________________________________________________
     455             : 
     456             : void AliPMDv0::CreatePMD()
     457             : {
     458             :   //
     459             :   // Create final detector from supermodules
     460             :   //
     461             :   // -- Author :     Y.P. VIYOGI, 07/05/1996. 
     462             :   // -- Modified:    P.V.K.S.Baba(JU), 15-12-97. 
     463             :   // -- Modified:    For New Geometry YPV, March 2001.
     464             : 
     465             :   Float_t  xp, yp, zp;
     466             :   Int_t i,j;
     467             :   Int_t nummod;
     468           0 :   Int_t jhrot12,jhrot13, irotdm;
     469           0 :   Int_t *idtmed = fIdtmed->GetArray()-599;
     470             :   
     471             :   //  VOLUMES Names : begining with "E" for all PMD volumes, 
     472             :   // The names of SIZE variables begin with S and have more meaningful
     473             :   // characters as shown below. 
     474             :   //            VOLUME  SIZE    MEDIUM  :       REMARKS 
     475             :   //            ------  -----   ------  : --------------------------- 
     476             :   //            EPMD    GASPMD   AIR    : INSIDE PMD  and its SIZE 
     477             :   // *** Define the  EPMD   Volume and fill with air *** 
     478             :   // Gaspmd, the dimension of HEXAGONAL mother volume of PMD,
     479             : 
     480             : 
     481           0 :   Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.};
     482             : 
     483           0 :   gaspmd[5] = fgkNcellHole * fgkCellRadius * 2. * fgkSqroot3by2;
     484           0 :   gaspmd[8] = gaspmd[5];
     485             : 
     486           0 :   TVirtualMC::GetMC()->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10);
     487           0 :   gGeoManager->SetVolumeAttribute("EPMD", "SEEN", 0);
     488             : 
     489           0 :   AliMatrix(irotdm, 90., 0.,  90.,  90., 180., 0.);
     490             :    
     491           0 :   AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.);
     492           0 :   AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.);
     493             : 
     494             : 
     495           0 :   Float_t dmthick = 2. * fSMthick + fgkThLead + fgkThSteel;
     496             : 
     497             :   // dparaemm1 array contains parameters of the imaginary volume EMM1, 
     498             :   // EMM1 is a master module of type 1, which has 24 copies in the PMD.
     499             :   // EMM1 : normal volume as in old cases
     500             : 
     501             : 
     502           0 :   Float_t dparaemm1[6] = {12.5,12.5,0.8,30.,0.,0.};
     503           0 :   dparaemm1[0] = fSMLength/2.;
     504           0 :   dparaemm1[1] = dparaemm1[0] *fgkSqroot3by2;
     505           0 :   dparaemm1[2] = dmthick/2.;
     506             : 
     507           0 :   TVirtualMC::GetMC()->Gsvolu("EMM1","PARA", idtmed[698], dparaemm1, 6);
     508           0 :   gGeoManager->SetVolumeAttribute("EMM1", "SEEN", 1);
     509             : 
     510             :   //
     511             :   // --- DEFINE Modules, iron, and lead volumes 
     512             :   //   Pb Convertor for EMM1
     513             : 
     514           0 :   Float_t dparapb1[6] = {12.5,12.5,8.,30.,0.,0.};
     515           0 :   dparapb1[0] = fSMLength/2.;
     516           0 :   dparapb1[1] = dparapb1[0] * fgkSqroot3by2;
     517           0 :   dparapb1[2] = fgkThLead/2.;
     518             : 
     519           0 :   TVirtualMC::GetMC()->Gsvolu("EPB1","PARA", idtmed[600], dparapb1, 6);
     520           0 :   gGeoManager->SetVolumeAttribute ("EPB1", "SEEN", 0);
     521             : 
     522             :   //   Fe Support for EMM1
     523           0 :   Float_t dparafe1[6] = {12.5,12.5,8.,30.,0.,0.};
     524           0 :   dparafe1[0] = dparapb1[0];
     525           0 :   dparafe1[1] = dparapb1[1];
     526           0 :   dparafe1[2] = fgkThSteel/2.;
     527             : 
     528           0 :   TVirtualMC::GetMC()->Gsvolu("EFE1","PARA", idtmed[618], dparafe1, 6);
     529           0 :   gGeoManager->SetVolumeAttribute ("EFE1", "SEEN", 0);
     530             : 
     531             :   //  
     532             :   // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1
     533             : 
     534             :   Float_t zps,zpb,zfe,zcv; 
     535             :   
     536           0 :   zps = -dparaemm1[2] + fSMthick/2.;
     537           0 :   TVirtualMC::GetMC()->Gspos("ESMB", 1, "EMM1", 0., 0., zps, 0, "ONLY");
     538           0 :   zpb = zps+fSMthick/2.+dparapb1[2];
     539           0 :   TVirtualMC::GetMC()->Gspos("EPB1", 1, "EMM1", 0., 0., zpb, 0, "ONLY");
     540           0 :   zfe = zpb+dparapb1[2]+dparafe1[2];
     541           0 :   TVirtualMC::GetMC()->Gspos("EFE1", 1, "EMM1", 0., 0., zfe, 0, "ONLY");
     542           0 :   zcv = zfe+dparafe1[2]+fSMthick/2.;
     543           0 :   TVirtualMC::GetMC()->Gspos("ESMA", 1, "EMM1", 0., 0., zcv, 0, "ONLY");
     544             : 
     545             :   // EMM2 : special master module having full row of cells but the number
     546             :   //        of rows limited by hole.
     547             : 
     548           0 :   Float_t dparaemm2[6] = {12.5,12.5,0.8,30.,0.,0.};
     549           0 :   dparaemm2[0] = fSMLength/2.;
     550           0 :   dparaemm2[1] = (fNcellSM - fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2;
     551           0 :   dparaemm2[2] = dmthick/2.;
     552             : 
     553           0 :   TVirtualMC::GetMC()->Gsvolu("EMM2","PARA", idtmed[698], dparaemm2, 6);
     554           0 :   gGeoManager->SetVolumeAttribute("EMM2", "SEEN", 1);
     555             : 
     556             :   //   Pb Convertor for EMM2
     557           0 :   Float_t dparapb2[6] = {12.5,12.5,8.,30.,0.,0.};
     558           0 :   dparapb2[0] = dparaemm2[0];
     559           0 :   dparapb2[1] = dparaemm2[1];
     560           0 :   dparapb2[2] = fgkThLead/2.;
     561             : 
     562           0 :   TVirtualMC::GetMC()->Gsvolu("EPB2","PARA", idtmed[600], dparapb2, 6);
     563           0 :   gGeoManager->SetVolumeAttribute ("EPB2", "SEEN", 0);
     564             : 
     565             :   //   Fe Support for EMM2
     566           0 :   Float_t dparafe2[6] = {12.5,12.5,8.,30.,0.,0.};
     567           0 :   dparafe2[0] = dparapb2[0];
     568           0 :   dparafe2[1] = dparapb2[1];
     569           0 :   dparafe2[2] = fgkThSteel/2.;
     570             : 
     571           0 :   TVirtualMC::GetMC()->Gsvolu("EFE2","PARA", idtmed[618], dparafe2, 6);
     572           0 :   gGeoManager->SetVolumeAttribute ("EFE2", "SEEN", 0);
     573             : 
     574             :   // position supermodule  ESMX, ESMY inside EMM2
     575             : 
     576           0 :   zps = -dparaemm2[2] + fSMthick/2.;
     577           0 :   TVirtualMC::GetMC()->Gspos("ESMY", 1, "EMM2", 0., 0., zps, 0, "ONLY");
     578           0 :   zpb = zps + fSMthick/2.+dparapb2[2];
     579           0 :   TVirtualMC::GetMC()->Gspos("EPB2", 1, "EMM2", 0., 0., zpb, 0, "ONLY");
     580           0 :   zfe = zpb + dparapb2[2]+dparafe2[2];
     581           0 :   TVirtualMC::GetMC()->Gspos("EFE2", 1, "EMM2", 0., 0., zfe, 0, "ONLY");
     582           0 :   zcv = zfe + dparafe2[2]+fSMthick/2.;
     583           0 :   TVirtualMC::GetMC()->Gspos("ESMX", 1, "EMM2", 0., 0., zcv, 0, "ONLY");
     584             :   // 
     585             :   // EMM3 : special master module having truncated rows and columns of cells 
     586             :   //        limited by hole.
     587             : 
     588           0 :   Float_t dparaemm3[6] = {12.5,12.5,0.8,30.,0.,0.};
     589           0 :   dparaemm3[0] = dparaemm2[1]/fgkSqroot3by2;
     590           0 :   dparaemm3[1] = (fgkNcellHole + 0.25) * fgkCellRadius *fgkSqroot3by2;
     591           0 :   dparaemm3[2] = dmthick/2.;
     592             : 
     593           0 :   TVirtualMC::GetMC()->Gsvolu("EMM3","PARA", idtmed[698], dparaemm3, 6);
     594           0 :   gGeoManager->SetVolumeAttribute("EMM3", "SEEN", 1);
     595             : 
     596             :   //   Pb Convertor for EMM3
     597           0 :   Float_t dparapb3[6] = {12.5,12.5,8.,30.,0.,0.};
     598           0 :   dparapb3[0] = dparaemm3[0];
     599           0 :   dparapb3[1] = dparaemm3[1];
     600           0 :   dparapb3[2] = fgkThLead/2.;
     601             : 
     602           0 :   TVirtualMC::GetMC()->Gsvolu("EPB3","PARA", idtmed[600], dparapb3, 6);
     603           0 :   gGeoManager->SetVolumeAttribute ("EPB3", "SEEN", 0);
     604             : 
     605             :   //   Fe Support for EMM3
     606           0 :   Float_t dparafe3[6] = {12.5,12.5,8.,30.,0.,0.};
     607           0 :   dparafe3[0] = dparapb3[0];
     608           0 :   dparafe3[1] = dparapb3[1];
     609           0 :   dparafe3[2] = fgkThSteel/2.;
     610             : 
     611           0 :   TVirtualMC::GetMC()->Gsvolu("EFE3","PARA", idtmed[618], dparafe3, 6);
     612           0 :   gGeoManager->SetVolumeAttribute ("EFE3", "SEEN", 0);
     613             : 
     614             :   // position supermodule  ESMP, ESMQ inside EMM3
     615             : 
     616           0 :   zps = -dparaemm3[2] + fSMthick/2.;
     617           0 :   TVirtualMC::GetMC()->Gspos("ESMQ", 1, "EMM3", 0., 0., zps, 0, "ONLY");
     618           0 :   zpb = zps + fSMthick/2.+dparapb3[2];
     619           0 :   TVirtualMC::GetMC()->Gspos("EPB3", 1, "EMM3", 0., 0., zpb, 0, "ONLY");
     620           0 :   zfe = zpb + dparapb3[2]+dparafe3[2];
     621           0 :   TVirtualMC::GetMC()->Gspos("EFE3", 1, "EMM3", 0., 0., zfe, 0, "ONLY");
     622           0 :   zcv = zfe + dparafe3[2] + fSMthick/2.;
     623           0 :   TVirtualMC::GetMC()->Gspos("ESMP", 1, "EMM3", 0., 0., zcv, 0, "ONLY");
     624             :   // 
     625             : 
     626             :   // EHOL is a tube structure made of air
     627             :   //
     628             :   //Float_t d_hole[3];
     629             :   //d_hole[0] = 0.;
     630             :   //d_hole[1] = fgkNcellHole * fgkCellRadius *2. * fgkSqroot3by2 + boundary;
     631             :   //d_hole[2] = dmthick/2.;
     632             :   //
     633             :   //TVirtualMC::GetMC()->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3);
     634             :   //gGeoManager->SetVolumeAttribute("EHOL", "SEEN", 1);
     635             : 
     636             :   //Al-rod as boundary of the supermodules
     637             : 
     638           0 :   Float_t alRod[3] ;
     639           0 :   alRod[0] = fSMLength * 3/2. - gaspmd[5]/2 - fgkBoundary ;
     640           0 :   alRod[1] = fgkBoundary;
     641           0 :   alRod[2] = dmthick/2.;
     642             : 
     643           0 :   TVirtualMC::GetMC()->Gsvolu("EALM","BOX ", idtmed[698], alRod, 3);
     644           0 :   gGeoManager->SetVolumeAttribute ("EALM", "SEEN", 1);
     645           0 :   Float_t xalm[3];
     646           0 :   xalm[0]=alRod[0] + gaspmd[5] + 3.0*fgkBoundary;
     647           0 :   xalm[1]=-xalm[0]/2.;
     648           0 :   xalm[2]=xalm[1];
     649             : 
     650           0 :   Float_t yalm[3];
     651           0 :   yalm[0]=0.;
     652           0 :   yalm[1]=xalm[0]*fgkSqroot3by2;
     653           0 :   yalm[2]=-yalm[1];
     654             : 
     655             :   // delx = full side of the supermodule
     656           0 :   Float_t delx=fSMLength * 3.;
     657           0 :   Float_t x1= delx*fgkSqroot3by2 /2.;
     658           0 :   Float_t x4=delx/4.; 
     659             : 
     660             :   // placing master modules and Al-rod in PMD
     661             : 
     662             :   Float_t dx = fSMLength;
     663           0 :   Float_t dy = dx * fgkSqroot3by2;
     664           0 :   Float_t xsup[9] = {static_cast<Float_t>(-dx/2.), static_cast<Float_t>(dx/2.), static_cast<Float_t>(3.*dx/2.), 
     665             :                      -dx,    0.,       dx,
     666           0 :                      static_cast<Float_t>(-3.*dx/2.), static_cast<Float_t>(-dx/2.), static_cast<Float_t>(dx/2.)};
     667             : 
     668           0 :   Float_t ysup[9] = {dy,  dy,  dy, 
     669             :                      0.,  0.,  0., 
     670           0 :                     -dy, -dy, -dy};
     671             : 
     672             :   // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes
     673             : 
     674           0 :   Float_t xoff = fgkBoundary * TMath::Tan(fgkPi/6.);
     675           0 :   Float_t xmod[3]={x4 + xoff , x4 + xoff, static_cast<Float_t>(-2.*x4-fgkBoundary/fgkSqroot3by2)};
     676           0 :   Float_t ymod[3] = {-x1 - fgkBoundary, x1 + fgkBoundary, 0.};
     677           0 :   Float_t xpos[9], ypos[9], x2, y2, x3, y3;
     678             : 
     679           0 :   Float_t xemm2 = fSMLength/2. - 
     680           0 :                   (fNcellSM + fgkNcellHole + 0.25) * fgkCellRadius * 0.5
     681           0 :                   + xoff;
     682           0 :   Float_t yemm2 = -(fNcellSM + fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2
     683           0 :                   - fgkBoundary;
     684             : 
     685           0 :   Float_t xemm3 = (fNcellSM + 0.5 * fgkNcellHole + 0.25) * fgkCellRadius +
     686             :     xoff;
     687             :   Float_t yemm3 = - (fgkNcellHole - 0.25) * fgkCellRadius * fgkSqroot3by2 -
     688             :     fgkBoundary;
     689             : 
     690           0 :   Float_t theta[3] = {0., static_cast<Float_t>(2.*fgkPi/3.), static_cast<Float_t>(4.*fgkPi/3.)};
     691           0 :   Int_t irotate[3] = {0, jhrot12, jhrot13};
     692             :   
     693             :   nummod=0;
     694           0 :   for (j=0; j<3; ++j) {
     695           0 :      TVirtualMC::GetMC()->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY");
     696           0 :      x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]);
     697           0 :      y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]);
     698             : 
     699           0 :      TVirtualMC::GetMC()->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY");
     700             : 
     701           0 :      x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]);
     702           0 :      y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]);
     703             : 
     704           0 :      TVirtualMC::GetMC()->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY");
     705             : 
     706           0 :      for (i=1; i<9; ++i) {
     707           0 :        xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) -
     708           0 :          ysup[i]*TMath::Sin(theta[j]);
     709           0 :        ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) +
     710           0 :          ysup[i]*TMath::Cos(theta[j]);
     711             :         
     712           0 :        AliDebugClass(1,Form("xpos: %f, ypos: %f", xpos[i], ypos[i]));
     713             :        
     714           0 :        nummod = nummod+1;
     715             :        
     716           0 :        AliDebugClass(1,Form("nummod %d",nummod));
     717             :        
     718           0 :        TVirtualMC::GetMC()->Gspos("EMM1", nummod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY");
     719             :        
     720             :      }
     721             :   }
     722             :   
     723             :   
     724             :   // place EHOL in the centre of EPMD
     725             :   // TVirtualMC::GetMC()->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY");
     726             :   
     727             :   // --- Place the EPMD in ALICE 
     728             :   xp = 0.;
     729             :   yp = 0.;
     730             :   zp = fgkZdist;
     731             :   
     732           0 :   TVirtualMC::GetMC()->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY");
     733             :     
     734           0 : }
     735             : 
     736             :  
     737             : //_____________________________________________________________________________
     738             : void AliPMDv0::CreateMaterials()
     739             : {
     740             :   //
     741             :   // Create materials for the PMD
     742             :   //
     743             :   // ORIGIN    : Y. P. VIYOGI 
     744             :   //
     745             :   
     746             :   //  cout << " Inside create materials " << endl;
     747             : 
     748           0 :   Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ();
     749           0 :   Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max();
     750             :   
     751             :   // --- Define the various materials for GEANT --- 
     752             : 
     753           0 :   AliMaterial(1, "Pb    $", 207.19, 82., 11.35, .56, 18.5);
     754             :   
     755             :   // Argon
     756             : 
     757             :   Float_t dAr   = 0.001782;   // --- Ar density in g/cm3 --- 
     758           0 :   Float_t x0Ar = 19.55 / dAr;
     759           0 :   AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4);
     760             : 
     761             :   // --- CO2 --- 
     762             : 
     763           0 :   Float_t aCO2[2] = { 12.,16. };
     764           0 :   Float_t zCO2[2] = { 6.,8. };
     765           0 :   Float_t wCO2[2] = { 1.,2. };
     766             :   Float_t dCO2    = 0.001977;
     767           0 :   AliMixture(3, "CO2  $", aCO2, zCO2, dCO2, -2, wCO2);
     768             : 
     769           0 :   AliMaterial(4, "Al   $", 26.98, 13., 2.7, 8.9, 18.5);
     770             : 
     771             :   // ArCO2
     772             : 
     773           0 :   Float_t aArCO2[3] = {39.948,12.0107,15.9994};
     774           0 :   Float_t zArCO2[3] = {18.,6.,8.};
     775           0 :   Float_t wArCO2[3] = {0.7,0.08,0.22};
     776             :   Float_t dArCO2    = dAr * 0.7 + dCO2 * 0.3;
     777           0 :   AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2);
     778             : 
     779           0 :   AliMaterial(6, "Fe   $", 55.85, 26., 7.87, 1.76, 18.5);
     780             : 
     781             :   // G10
     782             :   
     783           0 :   Float_t aG10[4]={1.,12.011,15.9994,28.086};
     784           0 :   Float_t zG10[4]={1.,6.,8.,14.};
     785             :   //PH  Float_t wG10[4]={0.148648649,0.104054054,0.483499056,0.241666667};
     786           0 :   Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714};
     787           0 :   AliMixture(8,"G10",aG10,zG10,1.7,4,wG10);
     788             :   
     789           0 :   AliMaterial(15, "Cu   $", 63.54, 29., 8.96, 1.43, 15.);
     790             : 
     791             :   // Steel
     792           0 :   Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 };
     793           0 :   Float_t zSteel[4] = { 26.,24.,28.,14. };
     794           0 :   Float_t wSteel[4] = { .715,.18,.1,.005 };
     795             :   Float_t dSteel    = 7.88;
     796           0 :   AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); 
     797             : 
     798             :   //Air
     799             : 
     800           0 :   Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
     801           0 :   Float_t zAir[4]={6.,7.,8.,18.};
     802           0 :   Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
     803             :   Float_t dAir1 = 1.20479E-10;
     804             :   Float_t dAir = 1.20479E-3;
     805           0 :   AliMixture(98, "Vacum$", aAir,  zAir, dAir1, 4, wAir);
     806           0 :   AliMixture(99, "Air  $", aAir,  zAir, dAir , 4, wAir);
     807             : 
     808             :   // Define tracking media 
     809           0 :   AliMedium(1,  "Pb conv.$", 1,  0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
     810           0 :   AliMedium(4,  "Al      $", 4,  0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
     811           0 :   AliMedium(5,  "ArCO2   $", 5,  1, 0, isxfld, sxmgmx, .1, .1, .10, .1);
     812           0 :   AliMedium(6,  "Fe      $", 6,  0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
     813           0 :   AliMedium(8,  "G10plate$", 8,  0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
     814           0 :   AliMedium(15, "Cu      $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1);
     815           0 :   AliMedium(19, "S  steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1);
     816           0 :   AliMedium(98, "Vacuum  $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10);
     817           0 :   AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1);
     818             : 
     819           0 : }
     820             : 
     821             : //_____________________________________________________________________________
     822             : void AliPMDv0::Init()
     823             : {
     824             :   //
     825             :   // Initialises PMD detector after it has been built
     826             :   //
     827             :   Int_t i;
     828             :   //  kdet=1;
     829             :   //
     830           0 :   if(AliLog::GetGlobalDebugLevel()>0) {
     831           0 :       printf("\n%s: ",ClassName());
     832           0 :       for(i=0;i<35;i++) printf("*");
     833           0 :       printf(" PMD_INIT ");
     834           0 :       for(i=0;i<35;i++) printf("*");
     835           0 :       printf("\n%s: ",ClassName());
     836           0 :       printf("                 PMD simulation package (v0) initialised\n");
     837           0 :       printf("%s: parameters of pmd\n", ClassName());
     838           0 :       printf("%s: %10.2f %10.2f %10.2f \
     839           0 :       %10.2f\n",ClassName(),fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist );
     840           0 :       printf("%s: ",ClassName());
     841           0 :       for(i=0;i<80;i++) printf("*");
     842           0 :       printf("\n");
     843           0 :   }
     844           0 :   Int_t *idtmed = fIdtmed->GetArray()-599;
     845           0 :   fMedSens=idtmed[605-1];
     846             :   // --- Generate explicitly delta rays in the iron, aluminium and lead --- 
     847             :   // removed all Gstpar and energy cut-offs moved to galice.cuts
     848           0 : }
     849             : 
     850             : //_____________________________________________________________________________
     851             : void AliPMDv0::StepManager()
     852             : {
     853             :   //
     854             :   // Called at each step in the PMD
     855             :   //
     856           0 :   Int_t   copy;
     857           0 :   Float_t hits[5], destep;
     858           0 :   Float_t center[3] = {0,0,0};
     859           0 :   Int_t   vol[6];
     860             :   //char *namep;
     861             :   
     862           0 :   if(TVirtualMC::GetMC()->CurrentMedium() == fMedSens && (destep = TVirtualMC::GetMC()->Edep())) {
     863             :   
     864           0 :     TVirtualMC::GetMC()->CurrentVolID(copy);
     865           0 :     vol[0] = copy;
     866           0 :     TVirtualMC::GetMC()->CurrentVolOffID(1,copy);
     867           0 :     vol[1] = copy;
     868           0 :     TVirtualMC::GetMC()->CurrentVolOffID(2,copy);
     869           0 :     vol[2] = copy;
     870           0 :     TVirtualMC::GetMC()->CurrentVolOffID(3,copy);
     871           0 :     vol[3] = copy;
     872           0 :     TVirtualMC::GetMC()->CurrentVolOffID(4,copy);
     873           0 :     vol[4] = copy;
     874           0 :     TVirtualMC::GetMC()->CurrentVolOffID(5,copy);
     875           0 :     vol[5] = copy;
     876             : 
     877           0 :     TVirtualMC::GetMC()->Gdtom(center,hits,1);
     878           0 :     hits[3] = destep*1e9; //Number in eV
     879             : 
     880             :    // this is for pile-up events
     881           0 :     hits[4] = TVirtualMC::GetMC()->TrackTime();
     882             : 
     883           0 :     AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
     884           0 :   }
     885           0 : }
     886             : 
     887             :   
     888             : //------------------------------------------------------------------------
     889             : // Get parameters
     890             : 
     891             : void AliPMDv0::GetParameters()
     892             : {
     893             :   // This gives all the parameters of the detector
     894             :   // such as Length of Supermodules
     895             :   // thickness of the Supermodule
     896             :   //
     897             :   Int_t ncellum, numum;
     898             :   ncellum  = 24;
     899             :   numum    = 3;
     900           0 :   fNcellSM  = ncellum * numum;  //no. of cells in a row in one supermodule
     901           0 :   fSMLength = (fNcellSM + 0.25 )*fgkCellRadius*2.;
     902           0 :   fSMthick  = fgkThBase + fgkThAir + fgkThPCB + fgkCellDepth +
     903             :     fgkThPCB + fgkThAir + fgkThPCB;
     904           0 : }

Generated by: LCOV version 1.11