LCOV - code coverage report
Current view: top level - PYTHIA8/pythia8210dev/src - JunctionSplitting.cc (source / functions) Hit Total Coverage
Test: coverage.info Lines: 0 509 0.0 %
Date: 2016-06-14 17:26:59 Functions: 0 7 0.0 %

          Line data    Source code
       1             : // JunctionSplitting.cc is a part of the PYTHIA event generator.
       2             : // Copyright (C) 2015 Torbjorn Sjostrand.
       3             : // PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
       4             : // Please respect the MCnet Guidelines, see GUIDELINES for details.
       5             : 
       6             : // Function definitions (not found in the header) for the
       7             : // JunctionSplitting class.
       8             : 
       9             : // Setup the list of colours, this is needed later for finding colour chains.
      10             : 
      11             : #include "Pythia8/JunctionSplitting.h"
      12             : 
      13             : namespace Pythia8 {
      14             : 
      15             : //==========================================================================
      16             : 
      17             : // The JunctionSplitting class.
      18             : 
      19             : //--------------------------------------------------------------------------
      20             : 
      21             : // Constants: could be changed here if desired, but normally should not.
      22             : // These are of technical nature, as described for each.
      23             : 
      24             : // For breaking J-J string, pick a Gamma by taking a step with fictitious mass.
      25             : const double JunctionSplitting::JJSTRINGM2MAX  = 25.;
      26             : const double JunctionSplitting::JJSTRINGM2FRAC = 0.1;
      27             : 
      28             : // Iterate junction rest frame boost until convergence or too many tries.
      29             : const double JunctionSplitting::CONVJNREST     = 1e-5;
      30             : const int JunctionSplitting::NTRYJNREST        = 20;
      31             : 
      32             : // Typical average transvere primary hadron mass <mThad>.
      33             : const double JunctionSplitting::MTHAD          = 0.9;
      34             : 
      35             : // Minimum delta R between two partons. This is to avoid problems
      36             : // with infinities.
      37             : const double JunctionSplitting::MINDELTAR = 1e-7; 
      38             : 
      39             : //--------------------------------------------------------------------------
      40             : 
      41             : // Initialize the class and all the created classes.
      42             : 
      43             : void JunctionSplitting::init( Info* infoPtrIn, Settings& settings,
      44             :   Rndm* rndmPtrIn, ParticleData* particleDataPtrIn) {
      45             : 
      46           0 :   infoPtr = infoPtrIn;
      47           0 :   rndmPtr = rndmPtrIn;
      48             : 
      49             :   // Initialize
      50           0 :   colTrace.init(infoPtrIn);
      51           0 :   stringLength.init(infoPtrIn, settings);
      52             : 
      53             :   // Initialize auxiliary fragmentation classes.
      54           0 :   flavSel.init(settings, rndmPtr);
      55           0 :   pTSel.init(settings, *particleDataPtrIn, rndmPtr);
      56           0 :   zSel.init(settings, *particleDataPtrIn, rndmPtr);
      57             : 
      58             :   // Initialize string and ministring fragmentation.
      59           0 :   stringFrag.init(infoPtr, settings, particleDataPtrIn, rndmPtr,
      60             :     &flavSel, &pTSel, &zSel);
      61             : 
      62             :   // For junction processing.
      63           0 :   eNormJunction     = settings.parm("StringFragmentation:eNormJunction");
      64           0 :   allowDoubleJunRem = settings.flag("ColourReconnection:allowDoubleJunRem");
      65           0 : }
      66             : 
      67             : //--------------------------------------------------------------------------
      68             : 
      69             : // Check that all colours are connected in physical way. Also split
      70             : // junction pairs, such that the hadronization can handle the configuration.
      71             : 
      72             : bool JunctionSplitting::checkColours( Event& event) {
      73             : 
      74             :   // Not really a colour check, but a check all numbers are valid.
      75           0 :   for (int i = 0; i < event.size(); ++i)
      76           0 :     if (abs(event[i].px()) >= 0. && abs(event[i].py()) >= 0.
      77           0 :       && abs(event[i].pz()) >= 0.  && abs(event[i].e()) >= 0.
      78           0 :        && abs(event[i].m()) >= 0.);
      79             :     else {
      80           0 :        infoPtr->errorMsg("Warning in JunctionSplitting::CheckColours: "
      81             :         "not-a-number energy/momentum/mass");
      82           0 :        return false;
      83             :     }
      84             : 
      85             :   // Check if any singlet gluons were made, and if so return false.
      86           0 :   for (int i  = 0; i < event.size(); ++i) {
      87           0 :     if (event[i].isFinal() && event[i].col() != 0 &&
      88           0 :         event[i].col() == event[i].acol()) {
      89           0 :       infoPtr->errorMsg("Warning in JunctionSplitting::CheckColours:"
      90             :       "Made a gluon colour singlet. Redoing colour configuration");
      91           0 :       return false;
      92             :     }
      93             :   }
      94             : 
      95             :   // Need to try and split junction structures.
      96           0 :   colTrace.setupColList(event);
      97           0 :   vector<int> iParton;
      98           0 :   vector<vector <int > > iPartonJun, iPartonAntiJun;
      99           0 :   getPartonLists(event, iPartonJun, iPartonAntiJun);
     100             : 
     101             :   // Try to split up the junction chains by splitting gluons
     102           0 :   if (!splitJunGluons(event, iPartonJun, iPartonAntiJun) ) {
     103           0 :     infoPtr->errorMsg("Warning in JunctionSplitting::CheckColours:"
     104             :       "Not possible to split junctions. Making new colour configuration");
     105           0 :     return false;
     106             :   }
     107             : 
     108             :   // Remove junctions if more than 2 are connected.
     109           0 :   if (!splitJunChains(event) ) {
     110           0 :     infoPtr->errorMsg("Warning in JunctionSplitting::CheckColours:"
     111             :       "Not possible to split junctions. Making new colour configuration");
     112           0 :     return false;
     113             :   }
     114             : 
     115             :   // Split up junction pairs.
     116           0 :   getPartonLists(event, iPartonJun, iPartonAntiJun);
     117           0 :   if (!splitJunPairs(event, iPartonJun, iPartonAntiJun) ) {
     118           0 :     infoPtr->errorMsg("Warning in JunctionSplitting::CheckColours:"
     119             :       "Not possible to split junctions. Making new colour configuration");
     120           0 :     return false;
     121             :   }
     122             : 
     123             :   // Done checking.
     124           0 :   return true;
     125           0 : }
     126             : 
     127             : //--------------------------------------------------------------------------
     128             : 
     129             : // Split connected junction chains into separated, mainly by splitting gluons
     130             : // into q-qbar pairs. If the junctions are directly connected
     131             : // other methods are applied.
     132             : 
     133             : bool JunctionSplitting::splitJunGluons(Event& event,
     134             :   vector<vector< int > >& iPartonJun, vector<vector< int > >& iPartonAntiJun) {
     135             : 
     136             :   // Loop over all junctions and all junction legs.
     137           0 :   for (int iJun = 0; iJun < int(iPartonJun.size()); ++iJun) {
     138             : 
     139             :     // Fill in vector of the legs content.
     140           0 :     vector<vector <int> > iJunLegs;
     141           0 :     iJunLegs.resize(3);
     142             :     int leg = -1;
     143           0 :     for (int i = 0; i < int(iPartonJun[iJun].size()); ++i) {
     144           0 :       if ( iPartonJun[iJun][i]/10 == iPartonJun[iJun][0]/10) ++leg;
     145           0 :       iJunLegs[leg].push_back(iPartonJun[iJun][i]);
     146             :     }
     147             : 
     148             :     // Loop over legs.
     149           0 :     for (int i = 0;i < int(iJunLegs.size()); ++i) {
     150             : 
     151             :       // If it is not connected to another junction, no need to do anything.
     152           0 :       if (iJunLegs[i].back() > 0)
     153             :         continue;
     154           0 :       int identJun = iJunLegs[i][0];
     155             :       // If no gluons in between two junctions, not possible to do anything.
     156           0 :       if (iJunLegs[i].size() == 2)
     157           0 :         continue;
     158             : 
     159             :       int identAntiJun = 0, iAntiLeg = -1;
     160             : 
     161             :       // Pick a new quark at random; for simplicity no diquarks.
     162             :       int colQ = 0, acolQ = 0;
     163           0 :       int idQ = flavSel.pickLightQ();
     164             : 
     165             :       // If a single gluon in between the two junctions, change it to a
     166             :       // quark-anti quark system.
     167           0 :       if ( iJunLegs[i].size() == 3) {
     168             : 
     169             :         // Store the new q qbar pair, sharing gluon colour and momentum.
     170           0 :         colQ = event[ iJunLegs[i][1] ].col();
     171           0 :         acolQ = event[ iJunLegs[i][1] ].acol();
     172           0 :         Vec4 pQ = 0.5 * event[ iJunLegs[i][1] ].p();
     173           0 :         double mQ = 0.5 * event[ iJunLegs[i][1] ].m();
     174           0 :         int iQ = event.append( idQ, 75, iJunLegs[i][1], 0, 0, 0, colQ, 0,
     175           0 :           pQ, mQ );
     176           0 :         int iQbar = event.append( -idQ, 75, iJunLegs[i][1], 0, 0, 0, 0, acolQ,
     177           0 :           pQ, mQ );
     178             : 
     179             :         // Mark split gluon.
     180           0 :         event[ iJunLegs[i][1] ].statusNeg();
     181           0 :         event[ iJunLegs[i][1] ].daughters( iQ, iQbar);
     182             : 
     183             :         // Update junction and anti junction list.
     184           0 :         identAntiJun = iJunLegs[i].back();
     185           0 :         int iOld = iJunLegs[i][1];
     186             :         bool erasing = false;
     187           0 :         for (int j = 0; j < int(iPartonJun[iJun].size()); ++j) {
     188           0 :           if (iPartonJun[iJun][j] == iOld)
     189           0 :             erasing = true;
     190           0 :           if (iPartonJun[iJun][j] == identAntiJun) {
     191           0 :             iPartonJun[iJun][j] = iQ;
     192           0 :             break;
     193             :           }
     194           0 :           if (erasing) {
     195           0 :             iPartonJun[iJun].erase(iPartonJun[iJun].begin() + j);
     196           0 :             --j;
     197           0 :           }
     198             :         }
     199             : 
     200             :         // Find the connected anti junction from the list of anti junctions.
     201             :         int iAntiJun = -1;
     202           0 :         for (int j = 0; j < int(iPartonAntiJun.size()); j++)
     203           0 :           if ( iPartonAntiJun[j][0]/10 == identAntiJun/10) {
     204             :             iAntiJun = j;
     205           0 :             break;
     206             :           }
     207             :         // If no anti junction found, something went wrong earlier.
     208           0 :         if (iAntiJun == -1) {
     209           0 :            infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunChain:"
     210             :                              "Something went wrong in finding anti junction");
     211           0 :            return false;
     212             :         }
     213             : 
     214             :         // Update the anti junction list.
     215             :         erasing = false;
     216           0 :         for (int j = 0; j < int(iPartonAntiJun[iAntiJun].size()); ++j) {
     217           0 :           if ( iPartonAntiJun[iAntiJun][j] / 10 == identAntiJun / 10)
     218           0 :             iAntiLeg++;
     219           0 :           if ( iPartonAntiJun[iAntiJun][j] == identJun) {
     220           0 :             iPartonAntiJun[iAntiJun][j] = iQbar;
     221           0 :             break;
     222             :           }
     223             :         }
     224           0 :       }
     225             :       // If more than a single gluon, decide depending on mass.
     226           0 :       else if (iJunLegs[i].size() > 3) {
     227             : 
     228             :         // Evaluate mass-squared for all adjacent gluon pairs.
     229           0 :         vector<double> m2Pair;
     230             :         double m2Sum = 0.;
     231           0 :         for (int j = 1; j < int(iJunLegs[i].size()) - 2; ++j) {
     232           0 :           double m2Now = 0.5 * event[ iJunLegs[i][j] ].p()
     233           0 :             * event[ iJunLegs[i][j + 1] ].p();
     234           0 :           m2Pair.push_back(m2Now);
     235           0 :           m2Sum += m2Now;
     236           0 :         }
     237             : 
     238             :         // Pick breakup region with probability proportional to mass-squared.
     239           0 :         double m2Reg = m2Sum * rndmPtr->flat();
     240             :         int iReg = -1;
     241           0 :         do m2Reg -= m2Pair[++iReg];
     242           0 :         while (m2Reg > 0. && iReg < int(m2Pair.size()) - 1);
     243           0 :         m2Reg = m2Pair[iReg];
     244             : 
     245             :         // increase iReg with one, since it should not point towards itself.
     246           0 :         iReg++;
     247             : 
     248             :         // Pick breaking point of string in chosen region (symmetrically).
     249           0 :         double m2Temp = min( JJSTRINGM2MAX, JJSTRINGM2FRAC * m2Reg);
     250           0 :         double xPos = 0.5;
     251           0 :         double xNeg = 0.5;
     252           0 :         do {
     253           0 :           double zTemp = zSel.zFrag( idQ, 0, m2Temp);
     254           0 :           xPos = 1. - zTemp;
     255           0 :           xNeg = m2Temp / (zTemp * m2Reg);
     256           0 :         } while (xNeg > 1.);
     257           0 :         if (rndmPtr->flat() > 0.5) swap(xPos, xNeg);
     258             : 
     259             :         // Pick up two "mother" gluons of breakup. Mark them decayed.
     260           0 :         Particle& gJun = event[ iJunLegs[i][iReg] ];
     261           0 :         Particle& gAnti = event[ iJunLegs[i][iReg + 1] ];
     262           0 :         gJun.statusNeg();
     263           0 :         gAnti.statusNeg();
     264           0 :         int dau1 = event.size();
     265           0 :         gJun.daughters(dau1, dau1 + 3);
     266           0 :         gAnti.daughters(dau1, dau1 + 3);
     267           0 :         int mother1 = min( iJunLegs[i][iReg], iJunLegs[i][iReg + 1]);
     268           0 :         int mother2 = max( iJunLegs[i][iReg], iJunLegs[i][iReg + 1]);
     269             : 
     270             :         // Need to store variables, since it is not safe to use references
     271             :         // with append.
     272           0 :         int gJunCol   = gJun.col();
     273           0 :         int gJunAcol  = gJun.acol();
     274           0 :         int gAntiAcol = gAnti.acol();
     275           0 :         Vec4 gJunP    = gJun.p();
     276           0 :         Vec4 gAntiP   = gAnti.p();
     277           0 :         double gJunM  = gJun.m();
     278           0 :         double gAntiM = gAnti.m();
     279             : 
     280             :         // Can keep one of old colours but need one new so unambiguous.
     281             :         colQ          = gJunAcol;
     282           0 :         acolQ         = event.nextColTag();
     283             : 
     284             :          // Store copied gluons with reduced momenta.
     285           0 :         int iGjun = event.append( 21, 75, mother1, mother2, 0, 0,
     286           0 :           gJunCol, gJunAcol, (1. - 0.5 * xPos) * gJunP,
     287           0 :           (1. - 0.5 * xPos) * gJunM);
     288           0 :         event.append( 21, 75, mother1, mother2, 0, 0,
     289           0 :           acolQ, gAntiAcol, (1. - 0.5 * xNeg) * gAntiP,
     290           0 :           (1. - 0.5 * xNeg) * gAntiM);
     291             : 
     292             :         // Store the new q qbar pair with remaining momenta.
     293           0 :         int iQ = event.append( idQ, 75, mother1, mother2, 0, 0,
     294           0 :           colQ, 0, 0.5 * xNeg * gAntiP, 0.5 * xNeg * gAntiM );
     295           0 :         int iQbar = event.append( -idQ, 75, mother1, mother2, 0, 0,
     296           0 :           0, acolQ, 0.5 * xPos * gJunP, 0.5 * xPos * gJunM );
     297             : 
     298             :         // Update the list of junctions to reflect the splitting.
     299           0 :         identAntiJun = iJunLegs[i].back();
     300             :         bool erasing = false;
     301           0 :         for (int j = 0; j < int(iPartonJun[iJun].size()); ++j) {
     302           0 :           if (iPartonJun[iJun][j] == mother1 ||
     303           0 :               iPartonJun[iJun][j] == mother2)
     304           0 :             erasing = true;
     305             : 
     306           0 :           if ( iPartonJun[iJun][j] == identAntiJun) {
     307           0 :             iPartonJun[iJun][j] = iQ;
     308           0 :             iPartonJun[iJun].insert(iPartonJun[iJun].begin() + j, iGjun);
     309           0 :             break;
     310             :           }
     311           0 :           if (erasing) {
     312           0 :             iPartonJun[iJun].erase(iPartonJun[iJun].begin() + j);
     313           0 :             j--;
     314           0 :           }
     315             :         }
     316             : 
     317             :         // Find the connected anti junction from the list of anti junctions.
     318             :         int iAntiJun = -1;
     319           0 :         for (int j = 0; j < int(iPartonAntiJun.size());j++)
     320           0 :           if ( iPartonAntiJun[j][0]/10 == identAntiJun/10) {
     321             :             iAntiJun = j;
     322           0 :             break;
     323             :           }
     324             :         // If no anti junction found, something went wrong earlier.
     325           0 :         if (iAntiJun == -1) {
     326           0 :            infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunChain:"
     327             :                              "Something went wrong in finding anti junction");
     328           0 :            return false;
     329             :         }
     330             : 
     331             :         // Update the anti junction list to reflect the splitting
     332           0 :         for (int j = 0; j < int(iPartonAntiJun[iAntiJun].size()); ++j) {
     333           0 :           if ( iPartonAntiJun[iAntiJun][j] / 10 == identAntiJun / 10)
     334           0 :             iAntiLeg++;
     335           0 :           if (iPartonAntiJun[iAntiJun][j] == identJun) {
     336           0 :             iPartonAntiJun[iAntiJun][j] = iQbar;
     337           0 :             break;
     338             :           }
     339             :         }
     340           0 :       }
     341             : 
     342             :       // Update end colours for both g -> q qbar and g g -> g g q qbar.
     343           0 :       event.endColJunction((-identJun)/10 - 1, i, colQ);
     344           0 :       event.endColJunction((-identAntiJun)/10 - 1, iAntiLeg, acolQ);
     345           0 :     }
     346           0 :   }
     347             : 
     348             :   // Done.
     349           0 :   return true;
     350           0 : }
     351             : 
     352             : //--------------------------------------------------------------------------
     353             : 
     354             : // Fix chains that contain more than two junctions.
     355             : // This is done by removing the minimum needed amount of junctions.
     356             : // Might need to make choice based on String length, now randomly chosen.
     357             : 
     358             : bool JunctionSplitting::splitJunChains(Event& event) {
     359             : 
     360             :   // Get junction chains.
     361           0 :   event.saveJunctionSize();
     362           0 :   vector<vector<int> > junChains = colTrace.getJunChains(event);
     363             : 
     364             :   // Remove junctions.
     365           0 :   vector<int> junRem;
     366           0 :   for (int i = 0; i < int(junChains.size()); ++i) {
     367           0 :     if (junChains[i].size() < 3)
     368             :       continue;
     369             : 
     370           0 :     vector<int> cols, acols;
     371           0 :     for (int j = 0; j < int(junChains[i].size()); ++j) {
     372             : 
     373           0 :       junRem.push_back(junChains[i][j]);
     374           0 :       if (event.kindJunction(junChains[i][j]) % 2 == 0)
     375           0 :         for (int jLeg = 0; jLeg < 3; ++jLeg)
     376           0 :           acols.push_back(event.colJunction(junChains[i][j],jLeg));
     377             :       else
     378           0 :         for (int jLeg = 0; jLeg < 3; ++jLeg)
     379           0 :           cols.push_back(event.colJunction(junChains[i][j],jLeg));
     380             :     }
     381             : 
     382           0 :     for (int j = 0; j < int(cols.size()); ++j)
     383           0 :       for (int k = 0; k < int(acols.size()); ++k)
     384           0 :         if (cols[j] == acols[k]) {
     385           0 :           cols.erase(cols.begin() + j);
     386           0 :           acols.erase(acols.begin() + k);
     387           0 :           j--;
     388           0 :           break;
     389             :         }
     390             : 
     391             :     // Find junctions if we have more colours than anti colours
     392           0 :     while (cols.size() > acols.size()) {
     393           0 :       int i1 = int(rndmPtr->flat() *cols.size());
     394           0 :       int col1 = cols[i1];
     395           0 :       cols.erase(cols.begin() + i1);
     396           0 :       int i2 = int(rndmPtr->flat() *cols.size());
     397           0 :       int col2 = cols[i2];
     398           0 :       cols.erase(cols.begin() + i2);
     399           0 :       int i3 = int(rndmPtr->flat() *cols.size());
     400           0 :       int col3 = cols[i3];
     401           0 :       cols.erase(cols.begin() + i3);
     402           0 :       event.appendJunction(1, col1, col2, col3);
     403             :     }
     404             : 
     405             :     // Find junctions if we have more colours than anti colours
     406           0 :     while (acols.size() > cols.size()) {
     407           0 :       int i1 = int(rndmPtr->flat() *acols.size());
     408           0 :       int acol1 = acols[i1];
     409           0 :       acols.erase(acols.begin() + i1);
     410           0 :       int i2 = int(rndmPtr->flat() *acols.size());
     411           0 :       int acol2 = acols[i2];
     412           0 :       acols.erase(acols.begin() + i2);
     413           0 :       int i3 = int(rndmPtr->flat() *acols.size());
     414           0 :       int acol3 = acols[i3];
     415           0 :       acols.erase(acols.begin() + i3);
     416           0 :       event.appendJunction(2,acol1,acol2,acol3);
     417             :     }
     418             : 
     419             :     // If we have more than two colour anti colour pairs
     420             :     // form junction anti junction pair.
     421           0 :     while (int(acols.size()) > 1) {
     422           0 :       int i1 = int(rndmPtr->flat() *cols.size());
     423           0 :       int col1 = cols[i1];
     424           0 :       cols.erase(cols.begin() + i1);
     425           0 :       int i2 = int(rndmPtr->flat() *cols.size());
     426           0 :       int col2 = cols[i2];
     427           0 :       cols.erase(cols.begin() + i2);
     428           0 :       int i3 = int(rndmPtr->flat() *acols.size());
     429           0 :       int acol1 = acols[i3];
     430           0 :       acols.erase(acols.begin() + i3);
     431           0 :       int i4 = int(rndmPtr->flat() *acols.size());
     432           0 :       int acol2 = acols[i4];
     433           0 :       acols.erase(acols.begin() + i4);
     434           0 :       int newCol = event.nextColTag();
     435           0 :       event.appendJunction(1, col1, col2, newCol);
     436           0 :       event.appendJunction(2, acol1, acol2, newCol);
     437             :     }
     438             : 
     439             :     // If we have one colour and one anti colour, form normal string.
     440           0 :     if (int(acols.size()) == 1) {
     441             :       int iCol = -1;
     442           0 :       for (int iPar = 0; iPar < event.size(); ++iPar)
     443           0 :         if (event[iPar].isFinal() && event[iPar].col() == cols[0])
     444           0 :           iCol = iPar;
     445           0 :       if (iCol == -1) {
     446           0 :         infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunChain:"
     447             :           "Splitting multiple directly connected junctions failed");
     448           0 :         return false;
     449             :       }
     450           0 :       int iNew = event.copy(iCol, 76);
     451           0 :       event[iNew].col(acols[0]);
     452           0 :     }
     453           0 :   }
     454             : 
     455             :   // Delete the junctions from the event record.
     456           0 :   sort(junRem.begin(),junRem.end());
     457           0 :   reverse(junRem.begin(),junRem.end());
     458           0 :   for (int i = 0; i < int(junRem.size()); ++i)
     459           0 :     event.eraseJunction(junRem[i]);
     460           0 :   event.saveJunctionSize();
     461             : 
     462           0 :   return true;
     463           0 : }
     464             : 
     465             : //--------------------------------------------------------------------------
     466             : 
     467             : // Split junction pairs.
     468             : // If it has 3 connections just ignore junctions.
     469             : // If it has 2 connections colapse into single string.
     470             : // If it has 1 connection, depend on the string length.
     471             : 
     472             : bool JunctionSplitting::splitJunPairs(Event& event,
     473             :   vector<vector< int > >& iPartonJun, vector<vector< int > >& iPartonAntiJun) {
     474             : 
     475             :   // Clear old memory.
     476           0 :   event.saveJunctionSize();
     477           0 :   vector<int> junRem;
     478             : 
     479             :   // Get junction chains.
     480           0 :   vector<vector<int> > junChains = colTrace.getJunChains(event);
     481             : 
     482           0 :   for (int i = 0; i < int(junChains.size()); ++i) {
     483           0 :     if (junChains[i].size() == 2) {
     484           0 :       vector<pair<int,int> > matchedLegs;
     485           0 :       for (int j = 0; j < 3; ++j)
     486           0 :         for (int k = 0; k < 3; ++k)
     487           0 :           if (event.colJunction(junChains[i][0],j) ==
     488           0 :               event.colJunction(junChains[i][1],k))
     489           0 :             matchedLegs.push_back(make_pair(j,k));
     490             : 
     491             :       // For three connected legs, just remove the junctions,
     492             :       // since the pair contains no energy/momentum.
     493           0 :       if (matchedLegs.size() == 3) {
     494           0 :         junRem.push_back(junChains[i][0]);
     495           0 :         junRem.push_back(junChains[i][1]);
     496             : 
     497             :       }
     498             : 
     499             :       // Split into string if two legs are combined.
     500           0 :       else if (matchedLegs.size() == 2) {
     501             : 
     502             :         // Find first leg.
     503             :         int i1 = 0;
     504           0 :         if (matchedLegs[0].first != 1 && matchedLegs[1].first != 1) i1 = 1;
     505           0 :         if (matchedLegs[0].first != 2 && matchedLegs[1].first != 2) i1 = 2;
     506             : 
     507             :         // Find second leg.
     508             :         int j1 = 0;
     509           0 :         if (matchedLegs[0].second != 1 && matchedLegs[1].second != 1) j1 = 1;
     510           0 :         if (matchedLegs[0].second != 2 && matchedLegs[1].second != 2) j1 = 2;
     511             : 
     512             :         // Find corresponding colours.
     513           0 :         int col = event.colJunction(junChains[i][0],i1);
     514           0 :         int acol = event.colJunction(junChains[i][1],j1);
     515           0 :         if (event.kindJunction(junChains[i][1]) % 2 == 1)
     516           0 :           swap(col,acol);
     517             : 
     518             :         // Find index of anti particle.
     519             :         int iAcol = -1;
     520           0 :         for (int j = 0;j < event.size();++j)
     521           0 :           if (event[j].isFinal() && event[j].acol() == acol) {
     522             :             iAcol = j;
     523           0 :             break;
     524             :           }
     525           0 :         if (iAcol == -1) {
     526           0 :           infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunChain:"
     527             :             "Anti colour not found when combining two junctions to a string");
     528           0 :           return false;
     529             :         }
     530             : 
     531             :         // Update anti colour of anti particle.
     532           0 :         int iNew = event.copy(iAcol,66);
     533           0 :         event[iNew].acol(col);
     534             : 
     535             :         // Remove the junctions from the event record.
     536           0 :         junRem.push_back(junChains[i][0]);
     537           0 :         junRem.push_back(junChains[i][1]);
     538           0 :       }
     539             : 
     540             :       // Split into string if two legs are combined.
     541           0 :       else if (matchedLegs.size() == 1) {
     542             : 
     543             :         // store junction numbers.
     544           0 :         int iJun = junChains[i][0];
     545           0 :         int iAnti = junChains[i][1];
     546           0 :         int iLeg = matchedLegs[0].first;
     547           0 :         int iAntiLeg = matchedLegs[0].second;
     548           0 :         if (event.kindJunction(iAnti) % 2 == 1)  {
     549           0 :           swap(iJun, iAnti);
     550           0 :           swap(iLeg, iAntiLeg);
     551           0 :         }
     552             : 
     553             :         // Find the junctions in the parton list.
     554             :         int iJunList = -1, iAntiList = -1;
     555           0 :         for (int l = 0;l < int(iPartonJun.size()); ++l)
     556           0 :           if (- iPartonJun[l][0]/10 - 1 == iJun) {
     557             :             iJunList = l;
     558           0 :             break;
     559             :           }
     560             : 
     561           0 :         for (int l = 0;l < int(iPartonAntiJun.size()); ++l)
     562           0 :           if (- iPartonAntiJun[l][0]/10 - 1 == iAnti) {
     563             :             iAntiList = l;
     564           0 :             break;
     565             :           }
     566             : 
     567             :         // Fill in vector of the legs content.
     568           0 :         vector<vector <int> > iJunLegs;
     569           0 :         iJunLegs.resize(3);
     570             :         int leg = -1;
     571             : 
     572           0 :         for (int l = 0; l < int(iPartonJun[iJunList].size()); ++l) {
     573           0 :           if ( iPartonJun[iJunList][l]/10 == iPartonJun[iJunList][0]/10) ++leg;
     574           0 :           iJunLegs[leg].push_back(iPartonJun[iJunList][l]);
     575             :         }
     576             : 
     577             :          // Fill in vector of the legs content.
     578           0 :         vector<vector <int> > iAntiLegs;
     579           0 :         iAntiLegs.resize(3);
     580             :         leg = -1;
     581           0 :         for (int l = 0; l < int(iPartonAntiJun[iAntiList].size()); ++l) {
     582           0 :           if ( iPartonAntiJun[iAntiList][l]/10
     583           0 :             == iPartonAntiJun[iAntiList][0]/10) ++leg;
     584           0 :           iAntiLegs[leg].push_back(iPartonAntiJun[iAntiList][l]);
     585             :         }
     586             : 
     587             :         // Identify the two external legs of either junction.
     588           0 :         vector<int>& iJunLeg0 = (iLeg == 0) ? iJunLegs[1] : iJunLegs[0];
     589           0 :         vector<int>& iJunLeg1 = (iLeg == 2) ? iJunLegs[1] : iJunLegs[2];
     590           0 :         vector<int>& iAntiLeg0 = (iAntiLeg == 0) ? iAntiLegs[1] : iAntiLegs[0];
     591           0 :         vector<int>& iAntiLeg1 = (iAntiLeg == 2) ? iAntiLegs[1] : iAntiLegs[2];
     592             : 
     593             :         // Simplified procedure: mainly study first parton on each leg.
     594           0 :         Vec4 pJunLeg0 = event[ iJunLeg0[1] ].p();
     595           0 :         Vec4 pJunLeg1 = event[ iJunLeg1[1] ].p();
     596           0 :         Vec4 pAntiLeg0 = event[ iAntiLeg0[1] ].p();
     597           0 :         Vec4 pAntiLeg1 = event[ iAntiLeg1[1] ].p();
     598             : 
     599           0 :         if ( REtaPhi(pJunLeg0,pJunLeg1)   < MINDELTAR ||
     600           0 :              REtaPhi(pAntiLeg0,pAntiLeg1) < MINDELTAR ||
     601           0 :              REtaPhi(pJunLeg0,pAntiLeg0)  < MINDELTAR ||
     602           0 :              REtaPhi(pJunLeg0,pAntiLeg1)  < MINDELTAR ||
     603           0 :              REtaPhi(pJunLeg1,pAntiLeg0)  < MINDELTAR ||
     604           0 :              REtaPhi(pJunLeg1,pAntiLeg1)  < MINDELTAR) {
     605           0 :          infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunPairs: "
     606             :           "Parallel junction state not allowed.");
     607           0 :          return false;
     608             :         }         
     609             :         
     610             :       // Starting frame hopefully intermediate to two junction directions.
     611           0 :       Vec4 pStart = pJunLeg0 / pJunLeg0.e() + pJunLeg1 / pJunLeg1.e()
     612           0 :         + pAntiLeg0 / pAntiLeg0.e() + pAntiLeg1 / pAntiLeg1.e();
     613             : 
     614             :       // Loop over iteration to junction/antijunction rest frames (JRF/ARF).
     615           0 :       RotBstMatrix MtoJRF, MtoARF;
     616           0 :       Vec4 pInJRF[3], pInARF[3];
     617           0 :       for (int iJunLocal = 0; iJunLocal < 2; ++iJunLocal) {
     618           0 :         int offset = (iJunLocal == 0) ? 0 : 2;
     619             : 
     620             :         // Iterate from system rest frame towards the junction rest frame.
     621           0 :         RotBstMatrix MtoRF, Mstep;
     622           0 :         MtoRF.bstback(pStart);
     623           0 :         Vec4 pInRF[4];
     624             :         int iter = 0;
     625           0 :         do {
     626           0 :           ++iter;
     627             : 
     628             :           // Find rest-frame momenta on the three sides of the junction.
     629             :           // Only consider first parton on each leg, for simplicity.
     630           0 :           pInRF[0 + offset] = pJunLeg0;
     631           0 :           pInRF[1 + offset] = pJunLeg1;
     632           0 :           pInRF[2 - offset] = pAntiLeg0;
     633           0 :           pInRF[3 - offset] = pAntiLeg1;
     634           0 :           for (int l = 0; l < 4; ++l) pInRF[l].rotbst(MtoRF);
     635             : 
     636             :           // For third side add both legs beyond other junction, weighted.
     637             :           double wt2 = -1e5; 
     638           0 :           if(-pInRF[2].e()/eNormJunction < 10) wt2 = 1. - exp( -pInRF[2].e() / eNormJunction);
     639             :           double wt3 = -1e5;
     640           0 :           if(-pInRF[3].e()/eNormJunction < 10) wt3 = 1. - exp( -pInRF[3].e() / eNormJunction);
     641           0 :           pInRF[2] = wt2 * pInRF[2] + wt3 * pInRF[3];
     642             : 
     643             :           // Find new junction rest frame from the set of momenta.
     644           0 :           Mstep = stringFrag.junctionRestFrame( pInRF[0], pInRF[1], pInRF[2]);
     645           0 :           MtoRF.rotbst( Mstep );
     646           0 :         } while (iter < 3 || (Mstep.deviation() > CONVJNREST
     647           0 :           && iter < NTRYJNREST) );
     648             : 
     649             :         // Store final boost and rest-frame (weighted) momenta.
     650           0 :         if (iJunLocal == 0) {
     651           0 :           MtoJRF = MtoRF;
     652           0 :           for (int l = 0; l < 3; ++l) pInJRF[l] = pInRF[l];
     653           0 :         } else {
     654           0 :           MtoARF = MtoRF;
     655           0 :           for (int l = 0; l < 3; ++l) pInARF[l] = pInRF[l];
     656             :         }
     657           0 :       }
     658             : 
     659             :       // Opposite operations: boost from JRF/ARF to original system.
     660           0 :       RotBstMatrix MfromJRF = MtoJRF;
     661           0 :       MfromJRF.invert();
     662           0 :       RotBstMatrix MfromARF = MtoARF;
     663           0 :       MfromARF.invert();
     664             : 
     665             :       // Velocity vectors of junctions and momentum of legs in lab frame.
     666           0 :       Vec4 vJun(0., 0., 0., 1.);
     667           0 :       vJun.rotbst(MfromJRF);
     668           0 :       Vec4 vAnti(0., 0., 0., 1.);
     669           0 :       vAnti.rotbst(MfromARF);
     670           0 :       Vec4 pLabJ[3], pLabA[3];
     671           0 :       for (int l = 0; l < 3; ++l) {
     672           0 :         pLabJ[l] = pInJRF[l];
     673           0 :         pLabJ[l].rotbst(MfromJRF);
     674           0 :         pLabA[l] = pInARF[l];
     675           0 :         pLabA[l].rotbst(MfromARF);
     676             :       }
     677             : 
     678             :       // Calculate Lambda-measure length of three possible topologies.
     679           0 :       double vJvA = vJun * vAnti;
     680             :       double vJvAe2y = vJvA;
     681           0 :       if ((vJvA*vJvA - 1.) > 0.) vJvAe2y += sqrt(vJvA*vJvA - 1.);
     682           0 :       double lambdaJA = stringLength.getJuncLength(pInJRF[0], pInJRF[1],
     683           0 :         pInARF[0], pInARF[1]);
     684             : 
     685           0 :       double lambda00 = stringLength.getStringLength(pLabJ[0], pLabA[0]) +
     686           0 :         stringLength.getStringLength(pLabJ[1], pLabA[1]);
     687             : 
     688           0 :       double lambda01 = stringLength.getStringLength(pLabJ[0], pLabA[1]) +
     689           0 :         stringLength.getStringLength(pLabJ[1], pLabA[0]);
     690             : 
     691             :       // Case when either topology without junctions is the shorter one.
     692           0 :       if (lambdaJA > min( lambda00, lambda01) && allowDoubleJunRem) {
     693             : 
     694             :         // Find indices of particles.
     695           0 :         int iCol1 = iJunLeg0[1];
     696           0 :         int iCol2 = iJunLeg1[1];
     697           0 :         int iAcol1 = iAntiLeg0[1];
     698           0 :         int iAcol2 = iAntiLeg1[1];
     699           0 :         if (lambda00 > lambda01)
     700           0 :           swap(iAcol1, iAcol2);
     701             : 
     702             :         // Change the colour index and mark junctions to be removed.
     703           0 :         int iNew1 = event.copy(iAcol1, 66);
     704           0 :         event[iNew1].acol(event[iCol1].col());
     705           0 :         int iNew2 = event.copy(iAcol2, 66);
     706           0 :         event[iNew2].acol(event[iCol2].col());
     707           0 :         junRem.push_back(junChains[i][0]);
     708           0 :         junRem.push_back(junChains[i][1]);
     709             :         continue;
     710           0 :       }
     711             : 
     712             :       // Case where junction and antijunction to be separated.
     713             :       // Shuffle (p+/p-)  momentum of order <mThad> between systems,
     714             :       // times 2/3 for 120 degree in JRF, times 1/2 for two legs,
     715             :       // but not more than half of what nearest parton carries.
     716             : 
     717             :       // Only allow to take momentum from non-heavy resonances
     718             :       // (i.e. id 1-5 and 21 and diquarks). If none is available return false.
     719           0 :       int idJ0Abs = event[ iJunLeg0[1] ].idAbs();
     720           0 :       bool acceptJ0 = idJ0Abs < 6 || idJ0Abs == 21 ||
     721           0 :         (idJ0Abs > 1000 && idJ0Abs < 6000 && (idJ0Abs / 10) % 10 == 0);
     722           0 :       int idJ1Abs = event[ iJunLeg1[1] ].idAbs();
     723           0 :       bool acceptJ1 = idJ1Abs < 6 || idJ1Abs == 21 ||
     724           0 :         (idJ1Abs > 1000 && idJ1Abs < 6000 && (idJ1Abs / 10) % 10 == 0);
     725           0 :       int idA0Abs = event[ iAntiLeg0[1] ].idAbs();
     726           0 :       bool acceptA0 = idA0Abs < 6 || idA0Abs == 21 ||
     727           0 :         (idA0Abs > 1000 && idA0Abs < 6000 && (idA0Abs / 10) % 10 == 0);
     728           0 :       int idA1Abs = event[ iAntiLeg1[1] ].idAbs();
     729           0 :       bool acceptA1 = idA1Abs < 6 || idA1Abs == 21 ||
     730           0 :         (idA1Abs > 1000 && idA1Abs < 6000 && (idA1Abs / 10) % 10 == 0);
     731             : 
     732           0 :       if ( !(acceptJ0 || acceptJ1)) {
     733           0 :          infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunPairs: "
     734             :           "No light quarks available in junction split.");
     735           0 :          return false;
     736             :       }
     737             : 
     738           0 :       if ( !(acceptA0 || acceptA1)) {
     739           0 :          infoPtr->errorMsg("Warning in JunctionSplitting::SplitJunPairs: "
     740             :           "No light quarks available in junction split.");
     741           0 :          return false;
     742             :       }
     743             : 
     744           0 :       double eShift = MTHAD / (3. * sqrt(vJvAe2y));
     745             :       double fracJ0 = 0, fracJ1 = 0, fracA0 = 0, fracA1 = 0;
     746           0 :       if (acceptJ0)
     747           0 :         fracJ0 = min(0.5, eShift / pInJRF[0].e());
     748           0 :       if (acceptJ1)
     749           0 :         fracJ1 = min(0.5, eShift / pInJRF[1].e());
     750           0 :       Vec4 pFromJun = fracJ0 * pJunLeg0 + fracJ1 * pJunLeg1;
     751           0 :       if (acceptA0)
     752           0 :         fracA0 = min(0.5, eShift / pInARF[0].e());
     753           0 :       if (acceptA1)
     754           0 :         fracA1 = min(0.5, eShift / pInARF[1].e());
     755           0 :       Vec4 pFromAnti = fracA0 * pAntiLeg0 + fracA1 * pAntiLeg1;
     756             : 
     757             :       // Pick a new quark at random; for simplicity no diquarks.
     758           0 :       int idQ = flavSel.pickLightQ();
     759             : 
     760           0 :       int junMother1  = min(iJunLeg0[1], iJunLeg1[1]);
     761           0 :       int junMother2  = max(iJunLeg0[1], iJunLeg1[1]);
     762           0 :       int antiMother1 = min(iAntiLeg0[1], iAntiLeg1[1]);
     763           0 :       int antiMother2 = max(iAntiLeg0[1], iAntiLeg1[1]);
     764             : 
     765             :       // Copy junction partons with scaled-down momenta and update legs.
     766           0 :       int iJunNew1 = event.copy(iJunLeg0[1], 76);
     767           0 :       event[iJunNew1].rescale5(1. - fracJ0);
     768           0 :       iJunLeg0[1] = iJunNew1;
     769           0 :       event[iJunNew1].mothers(junMother2, junMother1);
     770             : 
     771           0 :       int iJunNew2 = event.copy(iJunLeg1[1], 76);
     772           0 :       event[iJunNew2].rescale5(1. - fracJ1);
     773           0 :       iJunLeg1[1] = iJunNew2;
     774           0 :       event[iJunNew2].mothers(junMother2, junMother1);
     775             : 
     776             :       // Update antijunction anticolour and store antiquark with junction
     777             :       // momentum.
     778           0 :       int acolQ = event.nextColTag();
     779           0 :       event.endColJunction(iAnti, iAntiLeg, acolQ);
     780           0 :       event.colJunction(iAnti, iAntiLeg, acolQ);
     781           0 :       int iNewA = event.append( -idQ, 76, junMother2, junMother1, 0, 0,
     782           0 :         0, acolQ, pFromJun, pFromJun.mCalc() );
     783             : 
     784             :       // Copy anti junction partons with scaled-down momenta and update legs.
     785           0 :       int iAntiNew1 = event.copy(iAntiLeg0[1], 76);
     786           0 :       event[iAntiNew1].rescale5(1. - fracA0);
     787           0 :       iAntiLeg0[1] = iAntiNew1;
     788           0 :       event[iAntiNew1].mothers(antiMother2, antiMother1);
     789             : 
     790           0 :       int iAntiNew2 = event.copy(iAntiLeg1[1], 76);
     791           0 :       event[iAntiNew2].rescale5(1. - fracA1);
     792           0 :       iAntiLeg1[1] = iAntiNew2;
     793           0 :       event[iAntiNew2].mothers(antiMother2, antiMother1);
     794             : 
     795             :       // Update junction colour and store quark with antijunction momentum.
     796           0 :       int colQ = event.nextColTag();
     797           0 :       event.endColJunction(iJun, iLeg, colQ);
     798           0 :       event.colJunction(iJun, iLeg, colQ);
     799           0 :       int iNewJ = event.append( idQ, 76, antiMother2, antiMother1, 0, 0,
     800           0 :         colQ, 0, pFromAnti, pFromAnti.mCalc() );
     801             : 
     802             :       // Set daughters.
     803           0 :       event[event[iJunNew1].mother1()].daughters( iJunNew1, iNewA);
     804           0 :       event[event[iJunNew1].mother2()].daughters( iJunNew1, iNewA);
     805           0 :       event[event[iAntiNew1].mother1()].daughters( iAntiNew1, iNewJ);
     806           0 :       event[event[iAntiNew1].mother2()].daughters( iAntiNew1, iNewJ);
     807             : 
     808             :       // Done with splitting junction from antijunction.
     809           0 :       }
     810           0 :     }
     811             :   }
     812             : 
     813             :   // Delete the junctions from the event record.
     814           0 :   sort(junRem.begin(),junRem.end());
     815           0 :   reverse(junRem.begin(),junRem.end());
     816           0 :   for (int i = 0; i < int(junRem.size()); ++i)
     817           0 :     event.eraseJunction(junRem[i]);
     818           0 :   event.saveJunctionSize();
     819             : 
     820             :   // Done.
     821           0 :   return true;
     822           0 : }
     823             : 
     824             : //--------------------------------------------------------------------------
     825             : 
     826             : // Get the list of partons connected to the junctions.
     827             : 
     828             : bool JunctionSplitting::getPartonLists(Event& event,
     829             :   vector<vector< int > > & iPartonJun, vector<vector<int > >& iPartonAntiJun) {
     830             : 
     831             :   // Need to try and split junction structures.
     832           0 :   colTrace.setupColList(event);
     833           0 :   vector<int> iParton;
     834           0 :   iPartonJun.clear();
     835           0 :   iPartonAntiJun.clear();
     836             : 
     837             :   // Loop over junctions and collect all junctions.
     838             :   // Then afterwards collect all anti junctions.
     839             :   // This ensures that all gluons are collected on the junctions.
     840           0 :   for (int iJun = 0; iJun < event.sizeJunction(); ++iJun)
     841           0 :   if (event.remainsJunction(iJun)) {
     842             : 
     843           0 :     int kindJun = event.kindJunction(iJun);
     844           0 :     iParton.resize(0);
     845             : 
     846           0 :     if (kindJun % 2 != 1) continue;
     847             : 
     848             :     // Loop over junction legs.
     849           0 :     for (int iCol = 0; iCol < 3; ++iCol) {
     850           0 :       int indxCol = event.colJunction(iJun, iCol);
     851           0 :       iParton.push_back( -(10 + 10 * iJun + iCol) );
     852             :       // Junctions: find color ends.
     853           0 :       if (kindJun % 2 == 1 && !colTrace.traceFromAcol(indxCol,
     854             :        event, iJun, iCol, iParton))
     855           0 :         return false;
     856           0 :     }
     857             : 
     858             :     // Store the anti junction and junction list.
     859             :     int nNeg = 0;
     860           0 :     for (int i = 0; i < int(iParton.size()); ++i) if (iParton[i] < 0)
     861           0 :       ++nNeg;
     862           0 :     if (nNeg > 3 )
     863           0 :       iPartonJun.push_back(iParton);
     864           0 :   }
     865             : 
     866             :   // Loop over all anti junctions.
     867           0 :   for (int iJun = 0; iJun < event.sizeJunction(); ++iJun)
     868           0 :   if (event.remainsJunction(iJun)) {
     869             : 
     870           0 :     int kindJun = event.kindJunction(iJun);
     871           0 :     iParton.resize(0);
     872             : 
     873           0 :     if (kindJun % 2 != 0)
     874           0 :       continue;
     875             : 
     876             :     // Loop over junction legs.
     877           0 :     for (int iCol = 0; iCol < 3; ++iCol) {
     878           0 :       int indxCol = event.colJunction(iJun, iCol);
     879           0 :       iParton.push_back( -(10 + 10 * iJun + iCol) );
     880             :       // Antijunctions: find anticolor ends.
     881           0 :       if (kindJun % 2 == 0 && !colTrace.traceFromCol(indxCol,
     882             :        event, iJun, iCol, iParton))
     883           0 :         return false;
     884           0 :     }
     885             : 
     886             :     // Store the anti junction and junction list.
     887             :     int nNeg = 0;
     888           0 :     for (int i = 0; i < int(iParton.size()); ++i) if (iParton[i] < 0)
     889           0 :       ++nNeg;
     890           0 :     if (nNeg > 3 )
     891           0 :       iPartonAntiJun.push_back(iParton);
     892           0 :   }
     893             : 
     894             :   // Done.
     895           0 :   return true;
     896             : 
     897           0 : }
     898             : 
     899             : //--------------------------------------------------------------------------
     900             : 
     901             : // Change the anticolour of the particle that has acol to be col.
     902             : 
     903             : bool JunctionSplitting::setAcol(Event& event, int col, int acol) {
     904             : 
     905             :   // Update anticolour if it belongs to a particle.
     906           0 :   for (int j = 0;j < event.size(); ++j)
     907           0 :     if (event[j].isFinal() && event[j].acol() == acol) {
     908           0 :       int iNew = event.copy(j,66);
     909           0 :       event[iNew].acol(col);
     910             :       return true;
     911             :     }
     912             :   // Check if anti junction is connected to a junction.
     913           0 :   for (int j = 0;j < event.sizeJunction(); ++j)
     914           0 :     for (int jLeg = 0;jLeg < 3; ++jLeg)
     915           0 :       if (event.colJunction(j, jLeg) == acol) {
     916           0 :         event.colJunction(j, jLeg, col);
     917           0 :         return true;
     918             :       }
     919             : 
     920             :   // If no acol was found something went wrong.
     921           0 :   infoPtr->errorMsg("Warning in JunctionSplitting::setAcol:"
     922             :      "Anti colour not found when combing two junctions to a string");
     923           0 :   return false;
     924           0 : }
     925             : 
     926             : //==========================================================================
     927             : 
     928             : } // end namespace Pythia8

Generated by: LCOV version 1.11