Line data Source code
1 : #ifndef AliAODJet_H
2 : #define AliAODJet_H
3 : /* Copyright(c) 1998-2007, ALICE Experiment at CERN, All rights reserved. *
4 : * See cxx source for full Copyright notice */
5 :
6 : /* $Id$ */
7 :
8 : //-------------------------------------------------------------------------
9 : // AOD jet class
10 : // Author: Andreas Morsch, CERN
11 : //-------------------------------------------------------------------------
12 :
13 : #include <TLorentzVector.h>
14 : #include "AliVParticle.h"
15 : #include <TArrayI.h>
16 : #include "AliAODVertex.h"
17 :
18 :
19 : class AliAODJet : public AliVParticle {
20 :
21 : public:
22 : AliAODJet();
23 : AliAODJet(Double_t px, Double_t py, Double_t pz, Double_t e);
24 : AliAODJet(TLorentzVector & p);
25 : virtual ~AliAODJet();
26 : AliAODJet(const AliAODJet& jet);
27 : AliAODJet& operator=(const AliAODJet& jet);
28 : // AliVParticle methods
29 0 : virtual Double_t Px() const { return fMomentum->Px(); }
30 0 : virtual Double_t Py() const { return fMomentum->Py(); }
31 0 : virtual Double_t Pz() const { return fMomentum->Pz(); }
32 0 : virtual Double_t Pt() const { return fMomentum->Pt(); }
33 0 : virtual Double_t P() const { return fMomentum->P(); }
34 0 : virtual Double_t OneOverPt() const { return 1. / fMomentum->Pt(); }
35 0 : virtual Bool_t PxPyPz(Double_t p[3]) const { p[0] = Px(); p[1] = Py(); p[2] = Pz(); return kTRUE; }
36 : virtual Double_t Phi() const;
37 0 : virtual Double_t Theta() const { return fMomentum->Theta(); }
38 0 : virtual Double_t E() const { return fMomentum->E(); }
39 0 : virtual Double_t M() const { return fMomentum->M(); }
40 0 : virtual Double_t Eta() const { return fMomentum->Eta(); }
41 0 : virtual Double_t Y() const { return fMomentum->Rapidity();}
42 0 : virtual Double_t Xv() const {return -999.;} // put reasonable values here
43 0 : virtual Double_t Yv() const {return -999.;} //
44 0 : virtual Double_t Zv() const {return -999.;} //
45 0 : virtual Bool_t XvYvZv(Double_t x[3]) const { x[0] = Xv(); x[1] = Yv(); x[2] = Zv(); return kTRUE; }
46 0 : virtual Bool_t IsTriggeredEMCAL(){return (fTrigger&kEMCALTriggered)==kEMCALTriggered;}
47 0 : virtual Bool_t IsTriggeredTRD(){return (fTrigger&kTRDTriggered)==kTRDTriggered;}
48 0 : virtual UInt_t Trigger(){return fTrigger;}
49 :
50 : virtual void AddTrack(TObject *tr);
51 :
52 0 : TObject* GetTrack(Int_t i) {return fRefTracks->At(i);}
53 : virtual void SetPtSubtracted(Double_t ptCh, Double_t ptN){
54 0 : fPtSubtracted[0] = ptCh;
55 0 : fPtSubtracted[1] = ptN;
56 0 : }
57 0 : virtual Double_t GetPtSubtracted(Int_t i){return (i<2?fPtSubtracted[i]:0);}
58 : virtual void SetBgEnergy(Double_t bgEnCh, Double_t bgEnNe)
59 0 : {fBackgEnergy[0] = bgEnCh; fBackgEnergy[1] = bgEnNe;}
60 : virtual void SetEffArea(Double_t effACh, Double_t effANe, Double_t effAErrCh = 0, Double_t effAErrNe = 0)
61 : {
62 0 : fEffectiveArea[0] = effACh; fEffectiveArea[1] = effANe;
63 0 : fEffectiveAreaError[0] = effAErrCh;
64 0 : fEffectiveAreaError[1] = effAErrNe;
65 0 : }
66 : virtual void SetPxPyPzE(Double_t px, Double_t py, Double_t pz, Double_t e);
67 : virtual void SetPtEtaPhiM(Double_t pt, Double_t eta, Double_t phi, Double_t m);
68 0 : virtual void SetTrigger(UInt_t f){fTrigger |= f;}
69 0 : virtual void ResetTrigger(UInt_t f){fTrigger &= ~f;}
70 0 : virtual void SetNEF(Double_t nef) {fNeutralFraction=nef;}
71 0 : virtual Double_t GetNEF() const {return fNeutralFraction;}
72 :
73 0 : virtual TRefArray* GetRefTracks() const { return fRefTracks;}
74 0 : virtual Double_t ChargedBgEnergy() const { return fBackgEnergy[0];}
75 0 : virtual Double_t NeutralBgEnergy() const { return fBackgEnergy[1];}
76 0 : virtual Double_t TotalBgEnergy() const { return (fBackgEnergy[0] + fBackgEnergy[1]);}
77 :
78 0 : virtual Double_t EffectiveAreaCharged() const { return fEffectiveArea[0];}
79 0 : virtual Double_t EffectiveAreaNeutral() const { return fEffectiveArea[1];}
80 : virtual void SetVectorAreaCharged(TLorentzVector *effVACh){
81 0 : if(!fVectorAreaCharged)fVectorAreaCharged= new TLorentzVector(*effVACh);
82 0 : else *fVectorAreaCharged = *effVACh;
83 0 : }
84 0 : virtual TLorentzVector* VectorAreaCharged() const {return fVectorAreaCharged;}
85 :
86 :
87 :
88 0 : virtual Double_t ErrorEffectiveAreaCharged() const { return fEffectiveAreaError[0];}
89 0 : virtual Double_t ErrorEffectiveAreaNeutral() const { return fEffectiveAreaError[1];}
90 : virtual Double_t DeltaR(const AliVParticle* part) const;
91 :
92 0 : TLorentzVector* MomentumVector() const {return fMomentum;}
93 :
94 0 : virtual void SetPtLeading(Double_t pt) {fPtLeadingConstituent=pt;}
95 0 : virtual Double_t GetPtLeading() const { return fPtLeadingConstituent;}
96 :
97 : virtual void Print(Option_t* option) const;
98 :
99 : // Dummy
100 0 : virtual Short_t Charge() const { return 0;}
101 0 : virtual const Double_t* PID() const { return NULL;}
102 0 : virtual Int_t GetLabel() const { return -1;}
103 : // Dummy
104 0 : virtual Int_t PdgCode() const {return 0;}
105 :
106 : //
107 :
108 : // first only one bit for EMCAL and TRD, leave space for more
109 : // trigger types and/or other detectors
110 : // use some of the bits to flag jets with high pT track
111 : // and good high pT cut
112 : enum {kEMCALTriggered = 1<<0,
113 : kTRDTriggered = 1<<2,
114 : kHighTrackPtTriggered = 1<<7,
115 : kHighTrackPtBest = 1<<8
116 : };
117 :
118 :
119 : private:
120 : Double32_t fBackgEnergy[2]; // Subtracted background energy
121 : Double32_t fEffectiveArea[2]; // Effective jet area used for background subtraction
122 : Double32_t fEffectiveAreaError[2]; //[0,1,10] relative error of jet areas, 10 bit precision
123 : Double32_t fNeutralFraction; //[0,1,12] Neutral fraction between 0 and 1 12 bit precision;
124 : Double32_t fPtSubtracted[2]; //[0,0,12] pT after subtraction can be negative four momentum close to 0 in this case, 12 bit precision
125 : Double32_t fPtLeadingConstituent; //[0,0,12] pT of leading constituent
126 : UInt_t fTrigger; // Bit mask to flag jets triggered by a certain detector
127 : TLorentzVector* fMomentum; // Jet 4-momentum vector
128 : TLorentzVector* fVectorAreaCharged; // jet area four momentum
129 : TRefArray* fRefTracks; // array of references to the tracks belonging to the jet
130 :
131 :
132 174 : ClassDef(AliAODJet,14);
133 :
134 : };
135 :
136 : inline Double_t AliAODJet::Phi() const
137 : {
138 : // Return phi
139 0 : Double_t phi = fMomentum->Phi();
140 0 : if (phi < 0.) phi += 2. * TMath::Pi();
141 0 : return phi;
142 : }
143 :
144 : #endif
|