LCOV - code coverage report
Current view: top level - STEER/AOD - AliAODJet.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 1 56 1.8 %
Date: 2016-06-14 17:26:59 Functions: 2 51 3.9 %

          Line data    Source code
       1             : #ifndef AliAODJet_H
       2             : #define AliAODJet_H
       3             : /* Copyright(c) 1998-2007, ALICE Experiment at CERN, All rights reserved. *
       4             :  * See cxx source for full Copyright notice                               */
       5             : 
       6             : /* $Id$ */
       7             : 
       8             : //-------------------------------------------------------------------------
       9             : //     AOD jet class
      10             : //     Author: Andreas Morsch, CERN
      11             : //-------------------------------------------------------------------------
      12             : 
      13             : #include <TLorentzVector.h>
      14             : #include "AliVParticle.h"
      15             : #include <TArrayI.h>
      16             : #include "AliAODVertex.h"
      17             : 
      18             : 
      19             : class AliAODJet : public AliVParticle {
      20             : 
      21             :  public:
      22             :     AliAODJet();
      23             :     AliAODJet(Double_t px, Double_t py, Double_t pz, Double_t e);
      24             :     AliAODJet(TLorentzVector & p);  
      25             :     virtual ~AliAODJet();
      26             :     AliAODJet(const AliAODJet& jet); 
      27             :     AliAODJet& operator=(const AliAODJet& jet);
      28             : // AliVParticle methods
      29           0 :     virtual Double_t Px()         const { return fMomentum->Px();      }
      30           0 :     virtual Double_t Py()         const { return fMomentum->Py();      }
      31           0 :     virtual Double_t Pz()         const { return fMomentum->Pz();      }
      32           0 :     virtual Double_t Pt()         const { return fMomentum->Pt();      }
      33           0 :     virtual Double_t P()          const { return fMomentum->P();       }
      34           0 :     virtual Double_t OneOverPt()  const { return 1. / fMomentum->Pt(); }
      35           0 :     virtual Bool_t   PxPyPz(Double_t p[3]) const { p[0] = Px(); p[1] = Py(); p[2] = Pz(); return kTRUE; }
      36             :     virtual Double_t Phi()        const;
      37           0 :     virtual Double_t Theta()      const { return fMomentum->Theta();   }
      38           0 :     virtual Double_t E()          const { return fMomentum->E();       }
      39           0 :     virtual Double_t M()          const { return fMomentum->M();       }
      40           0 :     virtual Double_t Eta()        const { return fMomentum->Eta();     }
      41           0 :     virtual Double_t Y()          const { return fMomentum->Rapidity();}
      42           0 :     virtual Double_t Xv()         const {return -999.;} // put reasonable values here
      43           0 :     virtual Double_t Yv()         const {return -999.;} //
      44           0 :     virtual Double_t Zv()         const {return -999.;} //
      45           0 :     virtual Bool_t   XvYvZv(Double_t x[3]) const { x[0] = Xv(); x[1] = Yv(); x[2] = Zv(); return kTRUE; }  
      46           0 :     virtual Bool_t   IsTriggeredEMCAL(){return (fTrigger&kEMCALTriggered)==kEMCALTriggered;}
      47           0 :     virtual Bool_t   IsTriggeredTRD(){return (fTrigger&kTRDTriggered)==kTRDTriggered;}
      48           0 :     virtual UInt_t  Trigger(){return fTrigger;}
      49             :     
      50             :     virtual void     AddTrack(TObject *tr);
      51             :     
      52           0 :     TObject* GetTrack(Int_t i) {return fRefTracks->At(i);}
      53             :     virtual void     SetPtSubtracted(Double_t ptCh, Double_t ptN){
      54           0 :       fPtSubtracted[0] = ptCh;
      55           0 :       fPtSubtracted[1] = ptN;
      56           0 :     }
      57           0 :     virtual Double_t GetPtSubtracted(Int_t i){return (i<2?fPtSubtracted[i]:0);}
      58             :     virtual void     SetBgEnergy(Double_t bgEnCh, Double_t bgEnNe)
      59           0 :         {fBackgEnergy[0] = bgEnCh; fBackgEnergy[1] = bgEnNe;}
      60             :     virtual void     SetEffArea(Double_t effACh, Double_t effANe, Double_t effAErrCh = 0, Double_t effAErrNe = 0)
      61             :         {
      62           0 :           fEffectiveArea[0] = effACh; fEffectiveArea[1] = effANe;
      63           0 :           fEffectiveAreaError[0] = effAErrCh;
      64           0 :           fEffectiveAreaError[1] = effAErrNe;
      65           0 :         }
      66             :     virtual void     SetPxPyPzE(Double_t px, Double_t py, Double_t pz, Double_t e);
      67             :     virtual void     SetPtEtaPhiM(Double_t pt, Double_t eta, Double_t phi, Double_t m);
      68           0 :     virtual void     SetTrigger(UInt_t f){fTrigger |= f;}
      69           0 :     virtual void     ResetTrigger(UInt_t f){fTrigger &= ~f;}
      70           0 :     virtual void     SetNEF(Double_t nef) {fNeutralFraction=nef;}
      71           0 :     virtual Double_t GetNEF() const {return fNeutralFraction;}
      72             : 
      73           0 :     virtual TRefArray* GetRefTracks()           const { return  fRefTracks;}
      74           0 :     virtual Double_t   ChargedBgEnergy()        const { return  fBackgEnergy[0];}
      75           0 :     virtual Double_t   NeutralBgEnergy()        const { return  fBackgEnergy[1];}
      76           0 :     virtual Double_t   TotalBgEnergy()          const { return (fBackgEnergy[0] + fBackgEnergy[1]);}
      77             : 
      78           0 :     virtual Double_t   EffectiveAreaCharged()   const { return  fEffectiveArea[0];}
      79           0 :     virtual Double_t   EffectiveAreaNeutral()   const { return  fEffectiveArea[1];}
      80             :     virtual void SetVectorAreaCharged(TLorentzVector *effVACh){
      81           0 :       if(!fVectorAreaCharged)fVectorAreaCharged= new TLorentzVector(*effVACh);
      82           0 :       else *fVectorAreaCharged = *effVACh;
      83           0 :     }
      84           0 :     virtual TLorentzVector*  VectorAreaCharged()   const {return fVectorAreaCharged;}
      85             : 
      86             : 
      87             : 
      88           0 :     virtual Double_t   ErrorEffectiveAreaCharged()   const { return  fEffectiveAreaError[0];}
      89           0 :     virtual Double_t   ErrorEffectiveAreaNeutral()   const { return  fEffectiveAreaError[1];}
      90             :     virtual Double_t   DeltaR(const AliVParticle* part) const;
      91             :     
      92           0 :     TLorentzVector*    MomentumVector()         const {return fMomentum;}
      93             : 
      94           0 :     virtual void     SetPtLeading(Double_t pt) {fPtLeadingConstituent=pt;}
      95           0 :     virtual Double_t GetPtLeading()        const { return fPtLeadingConstituent;}
      96             : 
      97             :     virtual void       Print(Option_t* option) const;
      98             :     
      99             :     // Dummy  
     100           0 :     virtual Short_t Charge()      const { return 0;}
     101           0 :     virtual const Double_t* PID() const { return NULL;}
     102           0 :     virtual Int_t   GetLabel()    const { return -1;}
     103             :     // Dummy
     104           0 :     virtual Int_t    PdgCode()    const {return 0;}
     105             : 
     106             :     //
     107             : 
     108             :     // first only one bit for EMCAL and TRD, leave space for more
     109             :     // trigger types and/or other detectors
     110             :     // use some of the bits to flag jets with high pT track
     111             :     // and good high pT cut
     112             :     enum {kEMCALTriggered = 1<<0,
     113             :           kTRDTriggered =   1<<2,
     114             :           kHighTrackPtTriggered = 1<<7,
     115             :           kHighTrackPtBest = 1<<8
     116             :     };
     117             : 
     118             : 
     119             :  private:
     120             :     Double32_t      fBackgEnergy[2];         // Subtracted background energy
     121             :     Double32_t      fEffectiveArea[2];       // Effective jet area used for background subtraction
     122             :     Double32_t      fEffectiveAreaError[2];  //[0,1,10] relative error of jet areas, 10 bit precision
     123             :     Double32_t      fNeutralFraction;        //[0,1,12] Neutral fraction between 0 and 1 12 bit precision;
     124             :     Double32_t      fPtSubtracted[2];        //[0,0,12] pT after subtraction can be negative four momentum close to 0 in this case, 12 bit precision
     125             :     Double32_t      fPtLeadingConstituent;   //[0,0,12] pT of leading constituent
     126             :     UInt_t          fTrigger;                // Bit mask to flag jets triggered by a certain detector  
     127             :     TLorentzVector* fMomentum;               // Jet 4-momentum vector
     128             :     TLorentzVector* fVectorAreaCharged;      // jet area four momentum 
     129             :     TRefArray*      fRefTracks;              // array of references to the tracks belonging to the jet
     130             : 
     131             : 
     132         174 :     ClassDef(AliAODJet,14);
     133             : 
     134             : };
     135             : 
     136             : inline Double_t AliAODJet::Phi() const
     137             : {
     138             :     // Return phi
     139           0 :     Double_t phi = fMomentum->Phi();
     140           0 :     if (phi < 0.) phi += 2. * TMath::Pi();
     141           0 :     return phi;
     142             : }
     143             : 
     144             : #endif

Generated by: LCOV version 1.11