LCOV - code coverage report
Current view: top level - STEER/STEERBase - AliTPCPIDResponse.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 2 43 4.7 %
Date: 2016-06-14 17:26:59 Functions: 2 45 4.4 %

          Line data    Source code
       1             : #ifndef ALITPCPIDRESPONSE_H
       2             : #define ALITPCPIDRESPONSE_H
       3             : /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
       4             :  * See cxx source for full Copyright notice                               */
       5             : 
       6             : //-------------------------------------------------------
       7             : //                    TPC PID class
       8             : // A very naive design... Should be made better by the detector experts...
       9             : //   Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch 
      10             : // With many additions and modifications suggested by
      11             : //      Alexander Kalweit, GSI, alexander.philipp.kalweit@cern.ch
      12             : //      Dariusz Miskowiec, GSI, D.Miskowiec@gsi.de
      13             : // ...and some modifications by
      14             : //      Mikolaj Krzewicki, GSI, mikolaj.krzewicki@cern.ch
      15             : // ...and some modifications plus eta correction functions by
      16             : //      Benjamin Hess, University of Tuebingen, bhess@cern.ch
      17             : //-------------------------------------------------------
      18             : #include <Rtypes.h>
      19             : 
      20             : #include <TNamed.h>
      21             : #include <TVectorF.h>
      22             : #include <TObjArray.h>
      23             : #include <TF1.h>
      24             : #include <TString.h>
      25             : 
      26             : #include "AliPID.h"
      27             : #include "AliVTrack.h"
      28             : 
      29             : class TH2D;
      30             : class TSpline3;
      31             : class AliOADBContainer;
      32             : 
      33             : class AliTPCPIDResponse: public TNamed {
      34             : public:
      35             :   AliTPCPIDResponse();
      36             :   //TODO Remove? AliTPCPIDResponse(const Double_t *param);
      37             :   AliTPCPIDResponse(const AliTPCPIDResponse&);
      38             :   AliTPCPIDResponse& operator=(const AliTPCPIDResponse&);
      39             :   virtual ~AliTPCPIDResponse();
      40             : 
      41             :   enum EChamberStatus {
      42             :     kChamberOff=0,
      43             :     kChamberHighGain=1,
      44             :     kChamberLowGain=2,
      45             :     kChamberInvalid=3
      46             :   };
      47             :   
      48             :   enum ETPCgainScenario {
      49             :     kDefault= 0,
      50             :     kALLhigh = 1,
      51             :     kOROChigh = 2,
      52             :     kGainScenarioInvalid = 3
      53             :   };
      54             : 
      55             :   static const Int_t fgkNumberOfParticleSpecies=AliPID::kSPECIESC;
      56             :   static const Int_t fgkNumberOfGainScenarios=3;
      57             :   static const Int_t fgkNumberOfdEdxSourceScenarios=3;
      58             : 
      59             :   enum ETPCdEdxSource {
      60             :     kdEdxDefault=0,        // use combined dEdx from IROC+OROC (assumes ideal detector)
      61             :     kdEdxOROC=1,       // use only OROC
      62             :     kdEdxHybrid=2,   // Use IROC+OROC dEdx only where IROCS are good (high gain), otherwise fall back to OROC only
      63             :     kdEdxInvalid=3     //invalid
      64             :   };
      65             : 
      66             :   enum ETPCdEdxType {
      67             :     kdEdxTrack=0,
      68             :     kdEdxInfo=1
      69             :   };
      70             : 
      71             :   void SetSigma(Float_t res0, Float_t resN2);
      72             :   void SetBetheBlochParameters(Double_t kp1,
      73             :                                Double_t kp2,
      74             :                                Double_t kp3,
      75             :                                Double_t kp4,
      76             :                                Double_t kp5
      77             :                                );
      78             :   //Better prevent user from setting fMIP != 50. because fMIP set fix to 50 for much other code:
      79           0 :   void SetMip(Float_t mip) { fMIP = mip; } // Set overall normalisation; mean dE/dx for MIP
      80             :   Double_t Bethe(Double_t bg) const;
      81           0 :   void SetUseDatabase(Bool_t useDatabase) { fUseDatabase = useDatabase;}
      82           0 :   Bool_t GetUseDatabase() const { return fUseDatabase;}
      83             :   
      84           0 :   void SetResponseFunction(AliPID::EParticleType type, TObject * const o) { fResponseFunctions.AddAt(o,(Int_t)type); }
      85         268 :   const TObject * GetResponseFunction(AliPID::EParticleType type) const { return fResponseFunctions.At((Int_t)type); }
      86           0 :   void SetVoltage(Int_t n, Float_t v) {fVoltageMap[n]=v;}
      87           0 :   void SetVoltageMap(const TVectorF& a) {fVoltageMap=a;} //resets ownership, ~ will not delete contents
      88           0 :   Float_t GetVoltage(Int_t n) const {return fVoltageMap[n];}
      89           0 :   void SetLowGainIROCthreshold(Float_t v) {fLowGainIROCthreshold=v;}
      90           0 :   void SetBadIROCthreshold(Float_t v) {fBadIROCthreshhold=v;}
      91           0 :   void SetLowGainOROCthreshold(Float_t v) {fLowGainOROCthreshold=v;}
      92           0 :   void SetBadOROCthreshold(Float_t v) {fBadOROCthreshhold=v;}
      93           0 :   void SetMaxBadLengthFraction(Float_t f) {fMaxBadLengthFraction=f;}
      94             : 
      95           0 :   void SetMagField(Double_t mf) { fMagField=mf; }
      96             :   
      97           0 :   const TH2D* GetEtaCorrMap() const { return fhEtaCorr; };
      98             :   Bool_t SetEtaCorrMap(TH2D* hMap);
      99             :   
     100             :   Double_t GetTrackTanTheta(const AliVTrack *track) const;
     101             :   
     102             :   Double_t GetEtaCorrection(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource = kdEdxDefault) const;
     103             :     
     104             :   Double_t GetEtaCorrectedTrackdEdx(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource = kdEdxDefault) const;
     105             : 
     106           0 :   const TH2D* GetSigmaPar1Map() const { return fhEtaSigmaPar1; };
     107           0 :   Double_t GetSigmaPar0() const { return fSigmaPar0; };
     108             :   Bool_t SetSigmaParams(TH2D* hSigmaPar1Map, Double_t sigmaPar0);
     109             :   
     110             :   Double_t GetSigmaPar1(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource = kdEdxDefault) const;
     111             : 
     112             :   
     113           0 :   const TF1* GetMultiplicityCorrectionFunction() const  { return fCorrFuncMultiplicity; };
     114             :   void SetParameterMultiplicityCorrection(Int_t parIndex, Double_t parValue)  
     115           0 :       { if (fCorrFuncMultiplicity) fCorrFuncMultiplicity->SetParameter(parIndex, parValue); };
     116             :   
     117           0 :   const TF1* GetMultiplicityCorrectionFunctionTanTheta() const  { return fCorrFuncMultiplicityTanTheta; };
     118             :   void SetParameterMultiplicityCorrectionTanTheta(Int_t parIndex, Double_t parValue)  
     119           0 :       { if (fCorrFuncMultiplicityTanTheta) fCorrFuncMultiplicityTanTheta->SetParameter(parIndex, parValue); };
     120             : 
     121           0 :   const TF1* GetMultiplicitySigmaCorrectionFunction() const  { return fCorrFuncSigmaMultiplicity; };
     122             :   void SetParameterMultiplicitySigmaCorrection(Int_t parIndex, Double_t parValue)  
     123           0 :       { if (fCorrFuncSigmaMultiplicity) fCorrFuncSigmaMultiplicity->SetParameter(parIndex, parValue); };
     124             :   
     125             :   void ResetMultiplicityCorrectionFunctions(); 
     126             :   
     127           0 :   void SetCurrentEventMultiplicity(Int_t value) { fCurrentEventMultiplicity = value;  };
     128           0 :   Int_t GetCurrentEventMultiplicity() const { return fCurrentEventMultiplicity; };
     129             : 
     130             :   Double_t GetMultiplicityCorrection(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource = kdEdxDefault) const;
     131             :   
     132             :   Double_t GetMultiplicitySigmaCorrection(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource = kdEdxDefault) const;
     133             : 
     134             :   Double_t GetMultiplicityCorrectedTrackdEdx(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource = kdEdxDefault) const;
     135             :   
     136             :   Double_t GetEtaAndMultiplicityCorrectedTrackdEdx(const AliVTrack *track, AliPID::EParticleType species,
     137             :                                                    ETPCdEdxSource dedxSource = kdEdxDefault) const;
     138             :   
     139             :   // Fast functions for expert use only
     140             :   Double_t GetEtaCorrectionFast(const AliVTrack *track, Double_t dEdxSplines) const;
     141             :   
     142             :   Double_t GetMultiplicityCorrectionFast(const AliVTrack *track, Double_t dEdxExpected, Int_t multiplicity) const;
     143             :   
     144             :   Double_t GetMultiplicitySigmaCorrectionFast(Double_t dEdxExpected, Int_t multiplicity) const;
     145             :   
     146             :   Double_t GetSigmaPar1Fast(const AliVTrack *track, AliPID::EParticleType species,
     147             :                             Double_t dEdx, const TSpline3* responseFunction) const;
     148             :   
     149             :   //NEW
     150             :   void SetSigma(Float_t res0, Float_t resN2, ETPCgainScenario gainScenario );
     151             :   Double_t GetExpectedSignal( const AliVTrack* track,
     152             :                               AliPID::EParticleType species,
     153             :                               ETPCdEdxSource dedxSource = kdEdxDefault,
     154             :                               Bool_t correctEta = kFALSE,
     155             :                               Bool_t correctMultiplicity = kFALSE) const;
     156             :   Double_t GetExpectedSigma( const AliVTrack* track, 
     157             :                              AliPID::EParticleType species,
     158             :                              ETPCdEdxSource dedxSource = kdEdxDefault,
     159             :                              Bool_t correctEta = kFALSE,
     160             :                              Bool_t correctMultiplicity = kFALSE) const;
     161             :   Float_t GetNumberOfSigmas( const AliVTrack* track,
     162             :                              AliPID::EParticleType species,
     163             :                              ETPCdEdxSource dedxSource = kdEdxDefault,
     164             :                              Bool_t correctEta = kFALSE,
     165             :                              Bool_t correctMultiplicity = kFALSE) const;
     166             :   
     167             :   Float_t GetSignalDelta( const AliVTrack* track,
     168             :                           AliPID::EParticleType species,
     169             :                           ETPCdEdxSource dedxSource = kdEdxDefault,
     170             :                           Bool_t correctEta = kFALSE,
     171             :                           Bool_t correctMultiplicity = kFALSE,
     172             :                           Bool_t ratio = kFALSE) const;
     173             :   
     174             :   void SetResponseFunction(TObject* o,
     175             :                            AliPID::EParticleType type,
     176             :                            ETPCgainScenario gainScenario);
     177             :   void Print(Option_t* option="") const;
     178             :   TSpline3* GetResponseFunction( AliPID::EParticleType species,
     179             :                                  ETPCgainScenario gainScenario ) const;
     180             :   TSpline3* GetResponseFunction( const AliVTrack* track,
     181             :                                  AliPID::EParticleType species,
     182             :                                  ETPCdEdxSource dedxSource = kdEdxDefault) const;
     183             :   Bool_t ResponseFunctiondEdxN(const AliVTrack* track, 
     184             :                                AliPID::EParticleType species,
     185             :                                ETPCdEdxSource dedxSource,
     186             :                                Double_t& dEdx, Int_t& nPoints, ETPCgainScenario& gainScenario, TSpline3** responseFunction) const;
     187             :   Bool_t sectorNumbersInOut(Double_t* trackPositionInner,
     188             :                             Double_t* trackPositionOuter,
     189             :                             Float_t& phiIn, Float_t& phiOut, 
     190             :                             Int_t& in, Int_t& out ) const;
     191             :   AliTPCPIDResponse::EChamberStatus TrackStatus(const AliVTrack* track, Int_t layer) const;
     192             :   Float_t MaxClusterRadius(const AliVTrack* track) const;
     193             :   Bool_t TrackApex(const AliVTrack* track, Float_t magField, Double_t position[3]) const;
     194           0 :   static const char* GainScenarioName(Int_t n) {return fgkGainScenarioName[(n>fgkNumberOfGainScenarios)?fgkNumberOfGainScenarios:n];}
     195             :   Int_t ResponseFunctionIndex( AliPID::EParticleType species,
     196             :                                ETPCgainScenario gainScenario ) const;
     197             :   void ResetSplines();
     198             : 
     199             :   //OLD
     200             :   Double_t GetExpectedSignal(Float_t mom,
     201             :                      AliPID::EParticleType n=AliPID::kKaon) const;
     202             :   Double_t GetExpectedSigma(Float_t mom, Int_t nPoints,
     203             :                             AliPID::EParticleType n=AliPID::kKaon) const;
     204             :   Float_t  GetNumberOfSigmas(Float_t mom, 
     205             :                              Float_t dEdx, 
     206             :                              Int_t nPoints,
     207             :                              AliPID::EParticleType n=AliPID::kKaon) const {
     208             :     //
     209             :     // Deprecated function (for backward compatibility). Please use 
     210             :     // GetNumberOfSigmas(const AliVTrack *track, AliPID::EParticleType species, ETPCdEdxSource dedxSource,
     211             :     // Bool_t correctEta, Bool_t correctMultiplicity)
     212             :     // instead!TODO
     213             :     //
     214             :     
     215           0 :     Double_t bethe=GetExpectedSignal(mom,n);
     216           0 :     Double_t sigma=GetExpectedSigma(mom,nPoints,n);
     217           0 :     return (dEdx-bethe)/sigma;
     218             :   }
     219             : 
     220           0 :   Double_t GetMIP() const { return fMIP;} 
     221           0 :   Float_t  GetRes0()  const { return fRes0[0];  }
     222           0 :   Float_t  GetResN2() const { return fResN2[0]; }
     223           0 :   Float_t  GetRes0(ETPCgainScenario s)  const { return fRes0[s];  }
     224           0 :   Float_t  GetResN2(ETPCgainScenario s) const { return fResN2[s]; }
     225             : 
     226             :   Bool_t   RegisterSpline(const char * name, Int_t index);
     227             :   Double_t EvaldEdxSpline(Double_t bg,Int_t entry);
     228           0 :   static   Double_t SEvaldEdx(Double_t bg,Int_t entry){ return (fgInstance!=0)? fgInstance->EvaldEdxSpline(bg,entry):0;};
     229             : 
     230             :   //===| dEdx type functions |==================================================
     231             :   void SetdEdxType(ETPCdEdxType dEdxType, Int_t dEdxChargeType=0, Int_t dEdxWeightType=0, Double_t dEdxIROCweight=1., Double_t dEdxOROCmedWeight=1., Double_t dEdxOROClongWeight=1.) {
     232           0 :     fdEdxType=dEdxType; fdEdxChargeType=dEdxChargeType; fdEdxWeightType=dEdxWeightType; fIROCweight=dEdxIROCweight; fOROCmedWeight=dEdxOROCmedWeight; fOROClongWeight=dEdxOROClongWeight; }
     233           0 :   ETPCdEdxType      GetdEdxType()        const { return fdEdxType;       }
     234           0 :   Int_t             GetdEdxChargeType()  const { return fdEdxChargeType; }
     235           0 :   Int_t             GetdEdxWeightType()  const { return fdEdxWeightType; }
     236           0 :   Double_t          GetIROCweight()      const { return fIROCweight;     }
     237           0 :   Double_t          GetOROCmedWeight()   const { return fOROCmedWeight;  }
     238           0 :   Double_t          GetOROClongWeight()  const { return fOROClongWeight; }
     239             : 
     240             :   Double_t GetTrackdEdx(const AliVTrack* track) const;
     241             : 
     242             :   //===| Initialisation |=======================================================
     243             :   Bool_t InitFromOADB(const Int_t run, const char* pass, const char* oadbFile="$ALICE_PHYSICS/OADB/COMMON/PID/data/TPCPIDResponseOADB.root", Bool_t initMultiplicityCorrection=kTRUE);
     244             : 
     245             :   Bool_t SetSplinesFromArray                (const TObjArray* arrSplines);
     246             :   Bool_t SetMultiplicityCorrectionFromString(const TString& multiplicityData);
     247             :   Bool_t SetdEdxTypeFromString              (const TString& dEdxTypeSet);
     248             :   Bool_t SetdEdxResolutionFromString        (const TString& dEdxTypeSet);
     249             : 
     250             :   //===| Helpers |==============================================================
     251             :   static TString GetChecksum(const TObject* obj);
     252             :   static TObjArray* GetMultiplicityCorrectionArrayFromString(const TString& corrections);
     253             : 
     254             : protected:
     255             :   Double_t GetExpectedSignal(const AliVTrack* track,
     256             :                              AliPID::EParticleType species,
     257             :                              Double_t dEdx,
     258             :                              const TSpline3* responseFunction,
     259             :                              Bool_t correctEta,
     260             :                              Bool_t correctMultiplicity) const; 
     261             :   
     262             :   Double_t GetExpectedSigma(const AliVTrack* track, 
     263             :                             AliPID::EParticleType species,
     264             :                             ETPCgainScenario gainScenario,
     265             :                             Double_t dEdx,
     266             :                             Int_t nPoints,
     267             :                             const TSpline3* responseFunction,
     268             :                             Bool_t correctEta,
     269             :                             Bool_t correctMultiplicity) const;
     270             :   //
     271             :   // function for numberical debugging 0 registed splines can be used in the TFormula and tree visualizations
     272             :   //
     273             : private:
     274             :   Float_t fMIP;          // dEdx for MIP
     275             :   Float_t fRes0[fgkNumberOfGainScenarios];  // relative dEdx resolution  rel sigma = fRes0*sqrt(1+fResN2/npoint)
     276             :   Float_t fResN2[fgkNumberOfGainScenarios]; // relative Npoint dependence rel  sigma = fRes0*sqrt(1+fResN2/npoint)
     277             : 
     278             :   Double_t fKp1;   // Parameters
     279             :   Double_t fKp2;   //    of
     280             :   Double_t fKp3;   // the ALEPH
     281             :   Double_t fKp4;   // Bethe-Bloch
     282             :   Double_t fKp5;   // formula
     283             : 
     284             :   Bool_t fUseDatabase; // flag if fine-tuned database-response or simple ALEPH BB should be used
     285             :   
     286             :   TObjArray fResponseFunctions; //! ObjArray of response functions individually for each particle
     287             :   AliOADBContainer* fOADBContainer; //! OADB container with response functions
     288             :   TVectorF fVoltageMap; //!stores a map of voltages wrt nominal for all chambers
     289             :   Float_t fLowGainIROCthreshold;  //voltage threshold below which the IROC is considered low gain
     290             :   Float_t fBadIROCthreshhold;     //voltage threshold for bad IROCS
     291             :   Float_t fLowGainOROCthreshold;  //voltage threshold below which the OROC is considered low gain
     292             :   Float_t fBadOROCthreshhold;     //voltage threshold for bad OROCS
     293             :   Float_t fMaxBadLengthFraction;  //the maximum allowed fraction of track length in a bad sector.
     294             : 
     295             :   Int_t sectorNumber(Double_t phi) const;
     296             : 
     297             :   Double_t fMagField;  //! Magnetic field
     298             : 
     299             :   static const char* fgkGainScenarioName[fgkNumberOfGainScenarios+1];
     300             : 
     301             :   TH2D* fhEtaCorr; //! Map for TPC eta correction
     302             :   TH2D* fhEtaSigmaPar1; //! Map for parameter 1 of the IROCdEdx sigma parametrisation
     303             :   
     304             :   Double_t fSigmaPar0; // Parameter 0 of the dEdx sigma parametrisation
     305             :   
     306             :   Int_t fCurrentEventMultiplicity; // Multiplicity of the current event
     307             :   TF1* fCorrFuncMultiplicity; //! Function to correct for the multiplicity dependence of the TPC dEdx
     308             :   TF1* fCorrFuncMultiplicityTanTheta; //! Function to correct the additional tanTheta dependence of the multiplicity dependence of the TPC dEdx
     309             :   TF1* fCorrFuncSigmaMultiplicity; //! Function to correct for the multiplicity dependence of the TPC dEdx resolution
     310             : 
     311             :   // dEdx type information
     312             :   ETPCdEdxType     fdEdxType;         // source for dEdx information to use
     313             :   Int_t            fdEdxChargeType;   // charge type to use for dEdx calculation from AliTPCdEdxInfo
     314             :   Int_t            fdEdxWeightType;   // tracklet weighting type to use for dEdx calculation from AliTPCdEdxInfo
     315             :   Double_t         fIROCweight;       // IROC weight to use for dEdx calculation from AliTPCdEdxInfo
     316             :   Double_t         fOROCmedWeight;    // OROC medium pad size weight to use for dEdx calculation from AliTPCdEdxInfo
     317             :   Double_t         fOROClongWeight;   // OROC long pad size weight to use for dEdx calculation from AliTPCdEdxInfo
     318             : 
     319             :   //
     320             :   //
     321             :   static AliTPCPIDResponse*   fgInstance;     //! Instance of this class (singleton implementation)
     322             :   TObjArray                   fSplineArray;   //array of registered splines
     323         176 :   ClassDef(AliTPCPIDResponse,6)   // TPC PID class
     324             : };
     325             : 
     326             : 
     327             : #endif
     328             : 
     329             : 

Generated by: LCOV version 1.11