Line data Source code
1 : /**************************************************************************
2 : * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 : * *
4 : * Author: The ALICE Off-line Project. *
5 : * Contributors are mentioned in the code where appropriate. *
6 : * *
7 : * Permission to use, copy, modify and distribute this software and its *
8 : * documentation strictly for non-commercial purposes is hereby granted *
9 : * without fee, provided that the above copyright notice appears in all *
10 : * copies and that both the copyright notice and this permission notice *
11 : * appear in the supporting documentation. The authors make no claims *
12 : * about the suitability of this software for any purpose. It is *
13 : * provided "as is" without express or implied warranty. *
14 : **************************************************************************/
15 :
16 : /* $Id$ */
17 :
18 : ///////////////////////////////////////////////////////////////////////////////
19 : // //
20 : // Track finder //
21 : // //
22 : // Authors: //
23 : // Alex Bercuci <A.Bercuci@gsi.de> //
24 : // Markus Fasel <M.Fasel@gsi.de> //
25 : // //
26 : ///////////////////////////////////////////////////////////////////////////////
27 :
28 : #include <TBranch.h>
29 : #include <TDirectory.h>
30 : #include <TLinearFitter.h>
31 : #include <TTree.h>
32 : #include <TClonesArray.h>
33 : #include <TTreeStream.h>
34 : #include <TGeoMatrix.h>
35 : #include <TGeoManager.h>
36 :
37 : #include "AliLog.h"
38 : #include "AliMathBase.h"
39 : #include "AliESDEvent.h"
40 : #include "AliGeomManager.h"
41 : #include "AliRieman.h"
42 : #include "AliTrackPointArray.h"
43 :
44 : #include "AliTRDgeometry.h"
45 : #include "AliTRDpadPlane.h"
46 : #include "AliTRDcalibDB.h"
47 : #include "AliTRDReconstructor.h"
48 : #include "AliTRDCalibraFillHisto.h"
49 : #include "AliTRDrecoParam.h"
50 :
51 : #include "AliTRDcluster.h"
52 : #include "AliTRDdigitsParam.h"
53 : #include "AliTRDseedV1.h"
54 : #include "AliTRDtrackV1.h"
55 : #include "AliTRDtrackerV1.h"
56 : #include "AliTRDtrackerDebug.h"
57 : #include "AliTRDtrackingChamber.h"
58 : #include "AliTRDchamberTimeBin.h"
59 :
60 48 : ClassImp(AliTRDtrackerV1)
61 48 : ClassImp(AliTRDtrackerV1::AliTRDLeastSquare)
62 48 : ClassImp(AliTRDtrackerV1::AliTRDtrackFitterRieman)
63 :
64 : AliTRDtrackerV1::ETRDtrackerV1BetheBloch AliTRDtrackerV1::fgBB = AliTRDtrackerV1::kGeant;
65 : Double_t AliTRDtrackerV1::fgTopologicQA[kNConfigs] = {
66 : 0.5112, 0.5112, 0.5112, 0.0786, 0.0786,
67 : 0.0786, 0.0786, 0.0579, 0.0579, 0.0474,
68 : 0.0474, 0.0408, 0.0335, 0.0335, 0.0335
69 : };
70 : const Double_t AliTRDtrackerV1::fgkX0[kNPlanes] = {
71 : 300.2, 312.8, 325.4, 338.0, 350.6, 363.2};
72 : // Number of Time Bins/chamber should be also stored independently by the traker
73 : // (also in AliTRDReconstructor) in oder to be able to run HLT. Fix TODO
74 : Int_t AliTRDtrackerV1::fgNTimeBins = 0;
75 : AliRieman* AliTRDtrackerV1::fgRieman = NULL;
76 : TLinearFitter* AliTRDtrackerV1::fgTiltedRieman = NULL;
77 : TLinearFitter* AliTRDtrackerV1::fgTiltedRiemanConstrained = NULL;
78 :
79 : //____________________________________________________________________
80 74 : AliTRDtrackerV1::AliTRDtrackerV1(const AliTRDReconstructor *rec)
81 2 : :AliTracker()
82 2 : ,fkReconstructor(NULL)
83 2 : ,fkRecoParam(NULL)
84 2 : ,fGeom(NULL)
85 2 : ,fClusters(NULL)
86 2 : ,fTracklets(NULL)
87 2 : ,fTracks(NULL)
88 2 : ,fTracksESD(NULL)
89 2 : ,fSieveSeeding(0)
90 2 : ,fEventInFile(-1)
91 10 : {
92 : //
93 : // Default constructor.
94 : //
95 :
96 2 : SetReconstructor(rec); // initialize reconstructor
97 :
98 : // initialize geometry
99 2 : if(!AliGeomManager::GetGeometry()){
100 0 : AliFatal("Could not get geometry.");
101 : }
102 6 : fGeom = new AliTRDgeometry();
103 2 : fGeom->CreateClusterMatrixArray();
104 : TGeoHMatrix *matrix = NULL;
105 2 : Double_t loc[] = {0., 0., 0.};
106 2 : Double_t glb[] = {0., 0., 0.};
107 16 : for(Int_t ily=kNPlanes; ily--;){
108 : Int_t ism = 0;
109 48 : while(!(matrix = fGeom->GetClusterMatrix(AliTRDgeometry::GetDetector(ily, 2, ism)))) ism++;
110 12 : if(!matrix){
111 0 : AliError(Form("Could not get transformation matrix for layer %d. Use default.", ily));
112 0 : fR[ily] = fgkX0[ily];
113 0 : continue;
114 : }
115 12 : matrix->LocalToMaster(loc, glb);
116 12 : fR[ily] = glb[0]+ AliTRDgeometry::AnodePos()-.5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick();
117 12 : }
118 :
119 : // initialize cluster containers
120 112 : for (Int_t isector = 0; isector < AliTRDgeometry::kNsector; isector++) new(&fTrSec[isector]) AliTRDtrackingSector(fGeom, isector);
121 :
122 : // initialize arrays
123 2 : memset(fTrackQuality, 0, kMaxTracksStack*sizeof(Double_t));
124 2 : memset(fSeedLayer, 0, kMaxTracksStack*sizeof(Int_t));
125 2 : memset(fSeedTB, 0, kNSeedPlanes*sizeof(AliTRDchamberTimeBin*));
126 6 : fTracksESD = new TClonesArray("AliESDtrack", 2*kMaxTracksStack);
127 2 : fTracksESD->SetOwner();
128 4 : }
129 :
130 : //____________________________________________________________________
131 : AliTRDtrackerV1::~AliTRDtrackerV1()
132 12 : {
133 : //
134 : // Destructor
135 : //
136 :
137 4 : if(fgRieman) delete fgRieman; fgRieman = NULL;
138 4 : if(fgTiltedRieman) delete fgTiltedRieman; fgTiltedRieman = NULL;
139 4 : if(fgTiltedRiemanConstrained) delete fgTiltedRiemanConstrained; fgTiltedRiemanConstrained = NULL;
140 28 : for(Int_t isl =0; isl<kNSeedPlanes; isl++) if(fSeedTB[isl]) delete fSeedTB[isl];
141 8 : if(fTracksESD){ fTracksESD->Delete(); delete fTracksESD; }
142 2 : if(fTracks) {fTracks->Delete(); delete fTracks;}
143 8 : if(fTracklets) {fTracklets->Delete(); delete fTracklets;}
144 4 : if(IsClustersOwner() && fClusters) {
145 0 : AliInfo(Form("tracker[%p] removing %d own clusters @ %p", (void*)this, fClusters->GetEntries(), (void*)fClusters));
146 0 : fClusters->Delete(); delete fClusters;
147 : }
148 6 : if(fGeom) delete fGeom;
149 44 : }
150 :
151 : //____________________________________________________________________
152 : Int_t AliTRDtrackerV1::Clusters2Tracks(AliESDEvent *esd)
153 : {
154 : //
155 : // Steering stand alone tracking for full TRD detector
156 : //
157 : // Parameters :
158 : // esd : The ESD event. On output it contains
159 : // the ESD tracks found in TRD.
160 : //
161 : // Output :
162 : // Number of tracks found in the TRD detector.
163 : //
164 : // Detailed description
165 : // 1. Launch individual SM trackers.
166 : // See AliTRDtrackerV1::Clusters2TracksSM() for details.
167 : //
168 :
169 0 : if(!fkRecoParam){
170 0 : AliError("Reconstruction configuration not initialized. Call first AliTRDReconstructor::SetRecoParam().");
171 0 : return 0;
172 : }
173 :
174 : //AliInfo("Start Track Finder ...");
175 : Int_t ntracks = 0;
176 0 : for(int ism=0; ism<AliTRDgeometry::kNsector; ism++){
177 : // for(int ism=1; ism<2; ism++){
178 : //AliInfo(Form("Processing supermodule %i ...", ism));
179 0 : ntracks += Clusters2TracksSM(ism, esd);
180 : }
181 0 : AliInfo(Form("Number of tracks: !TRDin[%d]", ntracks));
182 : return ntracks;
183 0 : }
184 :
185 :
186 : //_____________________________________________________________________________
187 : Bool_t AliTRDtrackerV1::GetTrackPoint(Int_t index, AliTrackPoint &p) const
188 : {
189 : //AliInfo(Form("Asking for tracklet %d", index));
190 :
191 : // reset position of the point before using it
192 230 : p.SetXYZ(0., 0., 0.);
193 115 : AliTRDseedV1 *tracklet = GetTracklet(index);
194 115 : if (!tracklet) return kFALSE;
195 :
196 : // get detector for this tracklet
197 115 : Int_t det = tracklet->GetDetector();
198 115 : Int_t sec = fGeom->GetSector(det);
199 115 : Double_t alpha = (sec+.5)*AliTRDgeometry::GetAlpha(),
200 115 : sinA = TMath::Sin(alpha),
201 115 : cosA = TMath::Cos(alpha);
202 115 : Double_t local[3];
203 115 : local[0] = tracklet->GetX();
204 115 : local[1] = tracklet->GetY();
205 115 : local[2] = tracklet->GetZ();
206 115 : Double_t global[3];
207 115 : fGeom->RotateBack(det, local, global);
208 :
209 115 : Double_t cov2D[3]; Float_t cov[6];
210 115 : tracklet->GetCovAt(local[0], cov2D);
211 115 : cov[0] = cov2D[0]*sinA*sinA;
212 115 : cov[1] =-cov2D[0]*sinA*cosA;
213 115 : cov[2] =-cov2D[1]*sinA;
214 115 : cov[3] = cov2D[0]*cosA*cosA;
215 115 : cov[4] = cov2D[1]*cosA;
216 115 : cov[5] = cov2D[2];
217 : // store the global position of the tracklet and its covariance matrix in the track point
218 115 : p.SetXYZ(global[0],global[1],global[2], cov);
219 :
220 : // setting volume id
221 115 : AliGeomManager::ELayerID iLayer = AliGeomManager::ELayerID(AliGeomManager::kTRD1+fGeom->GetLayer(det));
222 115 : Int_t modId = fGeom->GetSector(det) * AliTRDgeometry::kNstack + fGeom->GetStack(det);
223 115 : UShort_t volid = AliGeomManager::LayerToVolUID(iLayer, modId);
224 115 : p.SetVolumeID(volid);
225 :
226 : return kTRUE;
227 230 : }
228 :
229 : //____________________________________________________________________
230 : TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitter()
231 : {
232 0 : if(!fgTiltedRieman) fgTiltedRieman = new TLinearFitter(4, "hyp4");
233 0 : return fgTiltedRieman;
234 0 : }
235 :
236 : //____________________________________________________________________
237 : TLinearFitter* AliTRDtrackerV1::GetTiltedRiemanFitterConstraint()
238 : {
239 0 : if(!fgTiltedRiemanConstrained) fgTiltedRiemanConstrained = new TLinearFitter(2, "hyp2");
240 0 : return fgTiltedRiemanConstrained;
241 0 : }
242 :
243 : //____________________________________________________________________
244 : AliRieman* AliTRDtrackerV1::GetRiemanFitter()
245 : {
246 0 : if(!fgRieman) fgRieman = new AliRieman(AliTRDseedV1::kNtb * AliTRDgeometry::kNlayer);
247 0 : return fgRieman;
248 0 : }
249 :
250 : //_____________________________________________________________________________
251 : Int_t AliTRDtrackerV1::PropagateBack(AliESDEvent *event)
252 : {
253 : // Propagation of ESD tracks from TPC to TOF detectors and building of the TRD track. For building
254 : // a TRD track an ESD track is used as seed. The informations obtained on the TRD track (measured points,
255 : // covariance, PID, etc.) are than used to update the corresponding ESD track.
256 : // Each track seed is first propagated to the geometrical limit of the TRD detector.
257 : // Its prolongation is searched in the TRD and if corresponding clusters are found tracklets are
258 : // constructed out of them (see AliTRDseedV1::AttachClusters()) and the track is updated.
259 : // Otherwise the ESD track is left unchanged.
260 : //
261 : // The following steps are performed:
262 : // 1. Selection of tracks based on the variance in the y-z plane.
263 : // 2. Propagation to the geometrical limit of the TRD volume. If track propagation fails the AliESDtrack::kTRDStop is set.
264 : // 3. Prolongation inside the fiducial volume (see AliTRDtrackerV1::FollowBackProlongation()) and marking
265 : // the following status bits:
266 : // - AliESDtrack::kTRDin - if the tracks enters the TRD fiducial volume
267 : // - AliESDtrack::kTRDStop - if the tracks fails propagation
268 : // - AliESDtrack::kTRDbackup - if the tracks fulfills chi2 conditions and qualify for refitting
269 : // 4. Writting to friends, PID, MC label, quality etc. Setting status bit AliESDtrack::kTRDout.
270 : // 5. Propagation to TOF. If track propagation fails the AliESDtrack::kTRDStop is set.
271 : //
272 48 : AliInfoF("Extra Tolerances: boundary check: %.2f, roadY: %.2f, roadZ: %.2f, extra cl/layer: %d, ExtraChi2out: %.2f",
273 : AliTRDReconstructor::GetExtraBoundaryTolerance(),
274 : AliTRDReconstructor::GetExtraRoadY(),
275 : AliTRDReconstructor::GetExtraRoadZ(),
276 : AliTRDReconstructor::GetExtraMaxClPerLayer(),
277 : AliTRDReconstructor::GetExtraChi2Out());
278 : //
279 16 : if(!fClusters || !fClusters->GetEntriesFast()){
280 0 : AliInfo("No TRD clusters");
281 0 : return 0;
282 : }
283 8 : AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance(); // Calibration monitor
284 8 : if (!calibra) AliInfo("Could not get Calibra instance");
285 10 : if (!fgNTimeBins) fgNTimeBins = fkReconstructor->GetNTimeBins();
286 :
287 : // Define scalers
288 : Int_t nFound = 0, // number of tracks found
289 : nBacked = 0, // number of tracks backed up for refit
290 : nSeeds = 0, // total number of ESD seeds
291 : nTRDseeds= 0, // number of seeds in the TRD acceptance
292 : nTPCseeds= 0; // number of TPC seeds
293 : Float_t foundMin = 20.0;
294 :
295 8 : fEventInFile = event->GetEventNumberInFile();
296 8 : nSeeds = event->GetNumberOfTracks();
297 :
298 8 : Float_t quality[nSeeds];
299 8 : Int_t index[nSeeds];
300 : // Sort tracks according to quality
301 : // (covariance in the yz plane)
302 8 : if(nSeeds){
303 : // quality = new Float_t[nSeeds]; // RS move on stack
304 : // index = new Int_t[4*nSeeds];
305 320 : for (Int_t iSeed = nSeeds; iSeed--;) {
306 152 : AliESDtrack *seed = event->GetTrack(iSeed);
307 152 : Double_t covariance[15];
308 152 : seed->GetExternalCovariance(covariance);
309 152 : quality[iSeed] = covariance[0] + covariance[2];
310 152 : }
311 8 : TMath::Sort(nSeeds, quality, index,kFALSE);
312 8 : }
313 :
314 : // Propagate all seeds
315 : Int_t expectedClr;
316 8 : AliTRDtrackV1 track;
317 320 : for (Int_t iSeed = 0; iSeed < nSeeds; iSeed++) {
318 :
319 : // Get the seeds in sorted sequence
320 152 : AliESDtrack *seed = event->GetTrack(index[iSeed]);
321 456 : Float_t p4 = seed->GetC(seed->GetBz());
322 :
323 : // Check the seed status
324 152 : ULong_t status = seed->GetStatus();
325 152 : if ((status & AliESDtrack::kTRDout) != 0) continue;
326 152 : if ((status & AliESDtrack::kTPCout)){
327 670 : AliDebug(3, Form("Prolongate seed[%2d] which is TPC.", iSeed));
328 : // set steering parameters for TPC
329 : //fkRecoParam->SetTrackParam(kTPC);
330 : /* } else {
331 : if ((status & AliESDtrack::kITSout)){
332 : AliDebug(3, Form("Prolongate seed[%2d] which is ITS.", iSeed));
333 : // set steering parameters for ITS
334 : //fkRecoParam->SetTrackParam(kITS);
335 : // rotate
336 : Float_t globalToTracking = AliTRDgeometry::GetAlpha()*(Int_t(seed->GetAlpha()/AliTRDgeometry::GetAlpha()) + (seed->GetAlpha()>0. ? 0.5 : -0.5));
337 : if(!seed->Rotate(globalToTracking)) continue;
338 : } else continue;*/
339 18 : } else continue;
340 :
341 : // Propagate to the entrance in the TRD mother volume
342 134 : track.~AliTRDtrackV1();
343 268 : new(&track) AliTRDtrackV1(*seed);
344 536 : if(AliTRDgeometry::GetXtrdBeg() > (AliTRDReconstructor::GetMaxStep() + track.GetX()) && !PropagateToX(track, AliTRDgeometry::GetXtrdBeg(), AliTRDReconstructor::GetMaxStep())){
345 28 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
346 28 : continue;
347 : }
348 212 : if(!AdjustSector(&track)){
349 0 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
350 0 : continue;
351 : }
352 212 : if(TMath::Abs(track.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) {
353 0 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
354 0 : continue;
355 : }
356 106 : nTPCseeds++;
357 530 : AliDebug(2, Form("TRD propagate TPC seed[%d] = %d.", iSeed, index[iSeed]));
358 : // store track status at TRD entrance
359 106 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
360 :
361 : // prepare track and do propagation in the TRD
362 106 : track.SetReconstructor(fkReconstructor);
363 212 : track.SetKink(Bool_t(seed->GetKinkIndex(0)));
364 106 : track.SetPrimary(status & AliESDtrack::kTPCin);
365 106 : expectedClr = FollowBackProlongation(track);
366 : // check if track entered the TRD fiducial volume
367 106 : if(track.GetTrackIn()){
368 42 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDin);
369 42 : nTRDseeds++;
370 42 : }
371 : // check if track was stopped in the TRD
372 106 : if (expectedClr<0){
373 2 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
374 2 : continue;
375 : } else {
376 104 : nFound++;
377 : // compute PID
378 104 : track.CookPID();
379 : //compute MC label
380 104 : track.CookLabel(1. - AliTRDReconstructor::GetLabelFraction());
381 : // update calibration references using this track
382 104 : if(calibra->GetHisto2d()) calibra->UpdateHistogramsV1(&track);
383 : // save calibration object
384 104 : if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ) {
385 208 : AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(track);
386 104 : calibTrack->SetOwner();
387 104 : seed->AddCalibObject(calibTrack);
388 104 : }
389 : //update ESD track
390 104 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
391 104 : track.UpdateESDtrack(seed);
392 : }
393 :
394 : // Make backup for back propagation
395 314 : if ((TMath::Abs(track.GetC(track.GetBz()) - p4) / TMath::Abs(p4) < 0.2) || (track.Pt() > 0.8)) {
396 103 : Int_t foundClr = track.GetNumberOfClusters();
397 103 : if (foundClr >= foundMin) {
398 : //if(track.GetBackupTrack()) UseClusters(track.GetBackupTrack());
399 :
400 : // Sign only gold tracks
401 80 : if (track.GetChi2() / track.GetNumberOfClusters() < 4) {
402 : //if ((seed->GetKinkIndex(0) == 0) && (track.Pt() < 1.5)) UseClusters(&track);
403 : }
404 : Bool_t isGold = kFALSE;
405 :
406 : // Full gold track
407 80 : if (track.GetChi2() / track.GetNumberOfClusters() < 5) {
408 40 : if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
409 40 : nBacked++;
410 : isGold = kTRUE;
411 40 : }
412 :
413 : // Almost gold track
414 40 : if ((!isGold) && (track.GetNCross() == 0) && (track.GetChi2() / track.GetNumberOfClusters() < 7)) {
415 : //seed->UpdateTrackParams(track, AliESDtrack::kTRDbackup);
416 0 : if (track.GetBackupTrack()) seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
417 0 : nBacked++;
418 : isGold = kTRUE;
419 0 : }
420 :
421 40 : if ((!isGold) && (track.GetBackupTrack())) {
422 0 : if ((track.GetBackupTrack()->GetNumberOfClusters() > foundMin) && ((track.GetBackupTrack()->GetChi2()/(track.GetBackupTrack()->GetNumberOfClusters()+1)) < 7)) {
423 0 : seed->UpdateTrackParams(track.GetBackupTrack(),AliESDtrack::kTRDbackup);
424 0 : nBacked++;
425 : isGold = kTRUE;
426 0 : }
427 : }
428 40 : }
429 103 : }
430 :
431 : // Propagation to the TOF
432 208 : if(!(seed->GetStatus()&AliESDtrack::kTRDStop)) {
433 104 : Int_t sm = track.GetSector();
434 : // default value in case we have problems with the geometry.
435 : Double_t xtof = 371.;
436 : //Calculate radial position of the beginning of the TOF
437 : //mother volume. In order to avoid mixing of the TRD
438 : //and TOF modules some hard values are needed. This are:
439 : //1. The path to the TOF module.
440 : //2. The width of the TOF (29.05 cm)
441 : //(with the help of Annalisa de Caro Mar-17-2009)
442 104 : if(gGeoManager){
443 208 : gGeoManager->cd(Form("/ALIC_1/B077_1/BSEGMO%d_1/BTOF%d_1", sm, sm));
444 : TGeoHMatrix *m = NULL;
445 104 : Double_t loc[]={0., 0., -.5*29.05}, glob[3];
446 :
447 208 : if((m=gGeoManager->GetCurrentMatrix())){
448 104 : m->LocalToMaster(loc, glob);
449 104 : xtof = TMath::Sqrt(glob[0]*glob[0]+glob[1]*glob[1]);
450 104 : }
451 104 : }
452 416 : if(xtof > (AliTRDReconstructor::GetMaxStep() + track.GetX()) && !PropagateToX(track, xtof, AliTRDReconstructor::GetMaxStep())){
453 0 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
454 0 : continue;
455 : }
456 208 : if(!AdjustSector(&track)){
457 0 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
458 0 : continue;
459 : }
460 208 : if(TMath::Abs(track.GetSnp()) > AliTRDReconstructor::GetMaxSnp()){
461 2 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDStop);
462 2 : continue;
463 : }
464 : //seed->UpdateTrackParams(&track, AliESDtrack::kTRDout);
465 : // TODO obsolete - delete
466 204 : seed->SetTRDQuality(track.StatusForTOF());
467 102 : }
468 102 : seed->SetTRDBudget(track.GetBudget(0));
469 102 : }
470 : // if(index) delete [] index; // RS moved to stack
471 : // if(quality) delete [] quality;
472 :
473 24 : AliInfo(Form("Number of seeds: TPCout[%d] TRDin[%d]", nTPCseeds, nTRDseeds));
474 24 : AliInfo(Form("Number of tracks: TRDout[%d] TRDbackup[%d]", nFound, nBacked));
475 :
476 : // run stand alone tracking
477 8 : if (fkReconstructor->IsSeeding()) Clusters2Tracks(event);
478 :
479 : return 0;
480 16 : }
481 :
482 :
483 : //____________________________________________________________________
484 : Int_t AliTRDtrackerV1::RefitInward(AliESDEvent *event)
485 : {
486 : //
487 : // Refits tracks within the TRD. The ESD event is expected to contain seeds
488 : // at the outer part of the TRD.
489 : // The tracks are propagated to the innermost time bin
490 : // of the TRD and the ESD event is updated
491 : // Origin: Thomas KUHR (Thomas.Kuhr@cern.ch)
492 : //
493 :
494 : Int_t nseed = 0; // contor for loaded seeds
495 : Int_t found = 0; // contor for updated TRD tracks
496 :
497 :
498 24 : if(!fClusters || !fClusters->GetEntriesFast()){
499 0 : AliInfo("No TRD clusters");
500 0 : return 0;
501 : }
502 8 : AliTRDtrackV1 track;
503 480 : for (Int_t itrack = 0; itrack < event->GetNumberOfTracks(); itrack++) {
504 152 : AliESDtrack *seed = event->GetTrack(itrack);
505 152 : ULong_t status = seed->GetStatus();
506 :
507 304 : new(&track) AliTRDtrackV1(*seed);
508 304 : if (track.GetX() < 270.0) {
509 44 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDbackup);
510 44 : continue;
511 : }
512 :
513 : // reject tracks which failed propagation in the TRD or
514 : // are produced by the TRD stand alone tracker
515 112 : if(!(status & AliESDtrack::kTRDout)) continue;
516 166 : if(!(status & AliESDtrack::kTRDin)) continue;
517 42 : nseed++;
518 :
519 42 : track.ResetCovariance(50.0);
520 :
521 : // do the propagation and processing
522 : Bool_t kUPDATE = kFALSE;
523 : Double_t xTPC = 250.0;
524 84 : if(FollowProlongation(track)){
525 : // Update the friend track
526 42 : if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ){
527 : TObject *o = NULL; Int_t ic = 0;
528 : AliTRDtrackV1 *calibTrack = NULL;
529 272 : while((o = seed->GetCalibObject(ic++))){
530 219 : if(!(calibTrack = dynamic_cast<AliTRDtrackV1*>(o))) continue;
531 42 : calibTrack->SetTrackOut(&track);
532 : }
533 42 : }
534 :
535 : // Prolongate to TPC
536 84 : if (PropagateToX(track, xTPC, AliTRDReconstructor::GetMaxStep())) { // -with update
537 42 : seed->UpdateTrackParams(&track, AliESDtrack::kTRDrefit);
538 42 : found++;
539 : kUPDATE = kTRUE;
540 42 : }
541 : }
542 :
543 : // Prolongate to TPC without update
544 42 : if(!kUPDATE) {
545 0 : AliTRDtrackV1 tt(*seed);
546 0 : if (PropagateToX(tt, xTPC, AliTRDReconstructor::GetMaxStep())) seed->UpdateTrackParams(&tt, AliESDtrack::kTRDbackup);
547 0 : }
548 42 : }
549 24 : AliInfo(Form("Number of seeds: TRDout[%d]", nseed));
550 24 : AliInfo(Form("Number of tracks: TRDrefit[%d]", found));
551 :
552 : return 0;
553 16 : }
554 :
555 : //____________________________________________________________________
556 : Int_t AliTRDtrackerV1::FollowProlongation(AliTRDtrackV1 &t)
557 : {
558 : // Extrapolates the TRD track in the TPC direction.
559 : //
560 : // Parameters
561 : // t : the TRD track which has to be extrapolated
562 : //
563 : // Output
564 : // number of clusters attached to the track
565 : //
566 : // Detailed description
567 : //
568 : // Starting from current radial position of track <t> this function
569 : // extrapolates the track through the 6 TRD layers. The following steps
570 : // are being performed for each plane:
571 : // 1. prepare track:
572 : // a. get plane limits in the local x direction
573 : // b. check crossing sectors
574 : // c. check track inclination
575 : // 2. search tracklet in the tracker list (see GetTracklet() for details)
576 : // 3. evaluate material budget using the geo manager
577 : // 4. propagate and update track using the tracklet information.
578 : //
579 : // Debug level 2
580 : //
581 :
582 84 : Int_t nClustersExpected = 0;
583 420 : for (Int_t iplane = kNPlanes; iplane--;) {
584 252 : Int_t index(-1);
585 252 : AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
586 756 : AliDebug(2, Form("Tracklet[%p] ly[%d] idx[%d]", (void*)tracklet, iplane, index));
587 298 : if(!tracklet) continue;
588 206 : if(!tracklet->IsOK()){
589 0 : AliDebug(1, Form("Tracklet Det[%d] !OK", tracklet->GetDetector()));
590 0 : continue;
591 : }
592 206 : Double_t x = tracklet->GetX();//GetX0();
593 : // reject tracklets which are not considered for inward refit
594 206 : if(x > t.GetX()+AliTRDReconstructor::GetMaxStep()) continue;
595 :
596 : // append tracklet to track
597 206 : t.SetTracklet(tracklet, index);
598 :
599 412 : if (x < (t.GetX()-AliTRDReconstructor::GetMaxStep()) && !PropagateToX(t, x+AliTRDReconstructor::GetMaxStep(), AliTRDReconstructor::GetMaxStep())) break;
600 206 : if (!AdjustSector(&t)) break;
601 :
602 : // Start global position
603 206 : Double_t xyz0[3];
604 206 : t.GetXYZ(xyz0);
605 :
606 : // End global position
607 206 : Double_t alpha = t.GetAlpha(), y, z;
608 206 : if (!t.GetProlongation(x,y,z)) break;
609 206 : Double_t xyz1[3];
610 206 : xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
611 206 : xyz1[1] = x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
612 206 : xyz1[2] = z;
613 :
614 206 : Double_t length = TMath::Sqrt(
615 412 : (xyz0[0]-xyz1[0])*(xyz0[0]-xyz1[0]) +
616 412 : (xyz0[1]-xyz1[1])*(xyz0[1]-xyz1[1]) +
617 206 : (xyz0[2]-xyz1[2])*(xyz0[2]-xyz1[2])
618 : );
619 206 : if(length>0.){
620 : // Get material budget
621 206 : Double_t param[7];
622 206 : if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) break;
623 206 : Double_t xrho= param[0]*param[4];
624 206 : Double_t xx0 = param[1]; // Get mean propagation parameters
625 :
626 : // Propagate and update
627 206 : t.PropagateTo(x, xx0, xrho);
628 206 : if (!AdjustSector(&t)) break;
629 412 : }
630 :
631 206 : Double_t cov[3]; tracklet->GetCovAt(x, cov);
632 206 : Double_t p[2] = { tracklet->GetY(), tracklet->GetZ()};
633 412 : Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov);
634 :
635 206 : if(fkReconstructor->IsDebugStreaming()){
636 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
637 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
638 0 : AliExternalTrackParam param0(t);
639 0 : AliExternalTrackParam param1(t);
640 0 : param1.Update(p, cov);
641 0 : TVectorD vcov(3,cov);
642 0 : TVectorD vpar(3,p);
643 0 : cstreamer << "FollowProlongationInfo"
644 0 : << "EventNumber=" << eventNumber
645 0 : << "iplane="<<iplane
646 0 : << "vcov.="<<&vcov
647 0 : << "vpar.="<<&vpar
648 0 : << "tracklet.=" << tracklet
649 0 : << "chi2="<< chi2
650 0 : << "param0.=" << ¶m0
651 0 : << "param1.=" << ¶m1
652 0 : << "\n";
653 0 : }
654 : /*
655 : AliInfo(Form("Pl:%d X:%+e : %+e P: %+e %+e Cov:%+e %+e %+e -> dXY: %+e %+e | chi2:%.2f pT:%.2f alp:%.3f",
656 : iplane,x,t.GetX(),p[0],p[1],cov[0],cov[1],cov[2],
657 : p[0]-t.GetY(),p[1]-t.GetZ(),
658 : chi2,t.Pt()*t.Charge(),t.GetAlpha()));
659 : */
660 412 : if (chi2 < fkRecoParam->GetChi2Cut() && ((AliExternalTrackParam&)t).Update(p, cov)){ // MI parameterizad chi2 cut 03.05.2014
661 : // if (chi2 < 1e+10 && ((AliExternalTrackParam&)t).Update(p, cov)){
662 : // Register info to track
663 206 : t.SetNumberOfClusters();
664 206 : t.UpdateChi2(chi2);
665 206 : nClustersExpected += tracklet->GetN();
666 206 : }
667 952 : }
668 :
669 84 : if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 || AliTRDReconstructor::GetStreamLevel()>1){
670 0 : Int_t index;
671 0 : for(int iplane=0; iplane<AliTRDgeometry::kNlayer; iplane++){
672 0 : AliTRDseedV1 *tracklet = GetTracklet(&t, iplane, index);
673 0 : if(!tracklet) continue;
674 0 : t.SetTracklet(tracklet, index);
675 0 : }
676 :
677 0 : if(fkReconstructor->IsDebugStreaming()){
678 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
679 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
680 0 : AliTRDtrackV1 track(t);
681 0 : track.SetOwner();
682 0 : cstreamer << "FollowProlongation"
683 0 : << "EventNumber=" << eventNumber
684 0 : << "ncl=" << nClustersExpected
685 0 : << "track.=" << &track
686 0 : << "\n";
687 0 : }
688 0 : }
689 84 : return nClustersExpected;
690 :
691 42 : }
692 :
693 : //_____________________________________________________________________________
694 : Int_t AliTRDtrackerV1::FollowBackProlongation(AliTRDtrackV1 &t)
695 : {
696 : // Extrapolates/Build the TRD track in the TOF direction.
697 : //
698 : // Parameters
699 : // t : the TRD track which has to be extrapolated
700 : //
701 : // Output
702 : // number of clusters attached to the track
703 : //
704 : // Starting from current radial position of track <t> this function
705 : // extrapolates the track through the 6 TRD layers. The following steps
706 : // are being performed for each plane:
707 : // 1. Propagate track to the entrance of the next chamber:
708 : // - get chamber limits in the radial direction
709 : // - check crossing sectors
710 : // - check track inclination
711 : // - check track prolongation against boundary conditions (see exclusion boundaries on AliTRDgeometry::IsOnBoundary())
712 : // 2. Build tracklet (see AliTRDseed::AttachClusters() for details) for this layer if needed. If only
713 : // Kalman filter is needed and tracklets are already linked to the track this step is skipped.
714 : // 3. Fit tracklet using the information from the Kalman filter.
715 : // 4. Propagate and update track at reference radial position of the tracklet.
716 : // 5. Register tracklet with the tracker and track; update pulls monitoring.
717 : //
718 : // Observation
719 : // 1. During the propagation a bit map is filled detailing the status of the track in each TRD chamber. The following errors are being registered for each tracklet:
720 : // - AliTRDtrackV1::kProlongation : track prolongation failed
721 : // - AliTRDtrackV1::kPropagation : track prolongation failed
722 : // - AliTRDtrackV1::kAdjustSector : failed during sector crossing
723 : // - AliTRDtrackV1::kSnp : too large bending
724 : // - AliTRDtrackV1::kTrackletInit : fail to initialize tracklet
725 : // - AliTRDtrackV1::kUpdate : fail to attach clusters or fit the tracklet
726 : // - AliTRDtrackV1::kUnknown : anything which is not covered before
727 : // 2. By default the status of the track before first TRD update is saved.
728 : //
729 : // Debug level 2
730 : //
731 : // Author
732 : // Alexandru Bercuci <A.Bercuci@gsi.de>
733 : //
734 :
735 : Int_t n = 0;
736 212 : Double_t driftLength = .5*AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick();
737 : AliTRDtrackingChamber *chamber = NULL;
738 :
739 212 : Int_t debugLevel = fkReconstructor->IsDebugStreaming() ? fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) : 0;
740 106 : if ( AliTRDReconstructor::GetStreamLevel()>0) debugLevel= AliTRDReconstructor::GetStreamLevel();
741 212 : TTreeSRedirector *cstreamer = fkReconstructor->IsDebugStreaming() ? fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker) : 0x0;
742 : const double kBoundaryEps = 0.5;
743 106 : double boundaryEps = kBoundaryEps + AliTRDReconstructor::GetExtraBoundaryTolerance();
744 : Bool_t kStoreIn(kTRUE), // toggel store track params. at TRD entry
745 : kStandAlone(kFALSE), // toggle tracker awarness of stand alone seeding
746 106 : kUseTRD(fkRecoParam->IsOverPtThreshold(t.Pt()));// use TRD measurment to update Kalman
747 :
748 : Int_t startLayer(0);
749 106 : AliTRDseedV1 tracklet, *ptrTracklet = NULL;
750 : // Special case for stand alone tracking
751 : // - store all tracklets found by seeding
752 : // - start propagation from first tracklet found
753 106 : AliTRDseedV1 *tracklets[kNPlanes];
754 106 : memset(tracklets, 0, sizeof(AliTRDseedV1 *) * kNPlanes);
755 : //
756 106 : double chi2Cut = fkRecoParam->GetChi2Cut() + AliTRDReconstructor::GetExtraChi2Out();
757 : //
758 848 : for(Int_t ip(kNPlanes); ip--;){
759 636 : if(!(tracklets[ip] = t.GetTracklet(ip))) continue;
760 0 : t.UnsetTracklet(ip);
761 0 : if(tracklets[ip]->IsOK()) startLayer=ip;
762 : kStandAlone = kTRUE;
763 : kUseTRD = kTRUE;
764 : }
765 530 : AliDebug(4, Form("SA[%c] Start[%d]\n"
766 : " [0]idx[%d] traklet[%p]\n"
767 : " [1]idx[%d] traklet[%p]\n"
768 : " [2]idx[%d] traklet[%p]\n"
769 : " [3]idx[%d] traklet[%p]\n"
770 : " [4]idx[%d] traklet[%p]\n"
771 : " [5]idx[%d] traklet[%p]"
772 : , kStandAlone?'y':'n', startLayer
773 : , t.GetTrackletIndex(0), (void*)tracklets[0]
774 : , t.GetTrackletIndex(1), (void*)tracklets[1]
775 : , t.GetTrackletIndex(2), (void*)tracklets[2]
776 : , t.GetTrackletIndex(3), (void*)tracklets[3]
777 : , t.GetTrackletIndex(4), (void*)tracklets[4]
778 : , t.GetTrackletIndex(5), (void*)tracklets[5]));
779 :
780 : // Loop through the TRD layers
781 : TGeoHMatrix *matrix = NULL;
782 106 : Double_t x(0.), y(0.), z(0.);
783 1670 : for (Int_t ily=startLayer, sm=-1, stk=-1, det=-1; ily < AliTRDgeometry::kNlayer; ily++) {
784 3130 : AliDebug(2, Form("Propagate to x[%d] = %7.2f", ily, fR[ily]));
785 :
786 : // rough estimate of the entry point
787 1252 : if (!t.GetProlongation(fR[ily], y, z)){
788 : n=-1;
789 0 : t.SetErrStat(AliTRDtrackV1::kProlongation);
790 0 : AliDebug(4, Form("Failed Rough Prolongation to ly[%d] x[%7.2f] y[%7.2f] z[%7.2f]", ily, fR[ily], y, z));
791 0 : break;
792 : }
793 :
794 : // find sector / stack / detector
795 626 : sm = t.GetSector();
796 : // TODO cross check with y value !
797 626 : stk = fGeom->GetStack(z, ily);
798 1878 : det = stk>=0 ? AliTRDgeometry::GetDetector(ily, stk, sm) : -1;
799 1878 : matrix = det>=0 ? fGeom->GetClusterMatrix(det) : NULL;
800 :
801 : // check if supermodule/chamber is installed
802 626 : if( !fGeom->GetSMstatus(sm) ||
803 626 : stk<0. ||
804 1878 : fGeom->IsHole(ily, stk, sm) ||
805 626 : !matrix ){
806 815 : AliDebug(4, Form("Missing Geometry ly[%d]. Guess radial position", ily));
807 : // propagate to the default radial position
808 652 : if(fR[ily] > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, fR[ily], AliTRDReconstructor::GetMaxStep())){
809 : n=-1;
810 0 : t.SetErrStat(AliTRDtrackV1::kPropagation);
811 0 : AliDebug(4, "Failed Propagation [Missing Geometry]");
812 0 : break;
813 : }
814 326 : if(!AdjustSector(&t)){
815 : n=-1;
816 0 : t.SetErrStat(AliTRDtrackV1::kAdjustSector);
817 0 : AliDebug(4, "Failed Adjust Sector [Missing Geometry]");
818 0 : break;
819 : }
820 326 : if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()){
821 : n=-1;
822 1 : t.SetErrStat(AliTRDtrackV1::kSnp);
823 5 : AliDebug(4, "Failed Max Snp [Missing Geometry]");
824 1 : break;
825 : }
826 162 : t.SetErrStat(AliTRDtrackV1::kGeometry, ily);
827 162 : continue;
828 : }
829 :
830 : // retrieve rotation matrix for the current chamber
831 463 : Double_t loc[] = {AliTRDgeometry::AnodePos()- driftLength, 0., 0.};
832 463 : Double_t glb[] = {0., 0., 0.};
833 463 : matrix->LocalToMaster(loc, glb);
834 2315 : AliDebug(3, Form("Propagate to det[%3d] x_anode[%7.2f] (%f %f)", det, glb[0]+driftLength, glb[1], glb[2]));
835 :
836 : // Propagate to the radial distance of the current layer
837 463 : x = glb[0] - AliTRDReconstructor::GetMaxStep();
838 1852 : if(x > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, x, AliTRDReconstructor::GetMaxStep())){
839 : n=-1;
840 1 : t.SetErrStat(AliTRDtrackV1::kPropagation);
841 5 : AliDebug(4, Form("Failed Initial Propagation to x[%7.2f]", x));
842 1 : break;
843 : }
844 924 : if(!AdjustSector(&t)){
845 : n=-1;
846 0 : t.SetErrStat(AliTRDtrackV1::kAdjustSector);
847 0 : AliDebug(4, "Failed Adjust Sector Start");
848 0 : break;
849 : }
850 924 : if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) {
851 : n=-1;
852 0 : t.SetErrStat(AliTRDtrackV1::kSnp);
853 0 : AliDebug(4, Form("Failed Max Snp[%f] MaxSnp[%f]", t.GetSnp(), AliTRDReconstructor::GetMaxSnp()));
854 0 : break;
855 : }
856 : Bool_t doRecalculate = kFALSE;
857 924 : if(sm != t.GetSector()){
858 9 : sm = t.GetSector();
859 : doRecalculate = kTRUE;
860 9 : }
861 924 : if(stk != fGeom->GetStack(z, ily)){
862 0 : stk = fGeom->GetStack(z, ily);
863 : doRecalculate = kTRUE;
864 0 : }
865 462 : if(doRecalculate){
866 9 : det = AliTRDgeometry::GetDetector(ily, stk, sm);
867 18 : if(!(matrix = fGeom->GetClusterMatrix(det))){
868 0 : t.SetErrStat(AliTRDtrackV1::kGeometry, ily);
869 0 : AliDebug(4, Form("Failed Geometry Matrix ly[%d]", ily));
870 0 : continue;
871 : }
872 9 : matrix->LocalToMaster(loc, glb);
873 9 : x = glb[0] - AliTRDReconstructor::GetMaxStep();
874 9 : }
875 :
876 : // check if track is well inside fiducial volume
877 924 : if (!t.GetProlongation(x+AliTRDReconstructor::GetMaxStep(), y, z)) {
878 : n=-1;
879 0 : t.SetErrStat(AliTRDtrackV1::kProlongation);
880 0 : AliDebug(4, Form("Failed Prolongation to x[%7.2f] y[%7.2f] z[%7.2f]", x+AliTRDReconstructor::GetMaxStep(), y, z));
881 0 : break;
882 : }
883 924 : if(fGeom->IsOnBoundary(det, y, z, boundaryEps)){
884 60 : t.SetErrStat(AliTRDtrackV1::kBoundary, ily);
885 300 : AliDebug(4, "Failed Track on Boundary");
886 60 : continue;
887 : }
888 :
889 1206 : Float_t prod(t.GetBz()*t.Charge());
890 402 : ptrTracklet = tracklets[ily];
891 804 : if(!ptrTracklet){ // BUILD TRACKLET
892 2010 : AliDebug(3, Form("Building tracklet det[%d]", det));
893 : // check data in supermodule
894 402 : if(!fTrSec[sm].GetNChambers()){
895 114 : t.SetErrStat(AliTRDtrackV1::kNoClusters, ily);
896 570 : AliDebug(4, "Failed NoClusters");
897 114 : continue;
898 : }
899 288 : if(fTrSec[sm].GetX(ily) < 1.){
900 2 : t.SetErrStat(AliTRDtrackV1::kNoClusters, ily);
901 10 : AliDebug(4, "Failed NoX");
902 2 : continue;
903 : }
904 :
905 : // check data in chamber
906 572 : if(!(chamber = fTrSec[sm].GetChamber(stk, ily))){
907 22 : t.SetErrStat(AliTRDtrackV1::kNoClusters, ily);
908 110 : AliDebug(4, "Failed No Detector");
909 22 : continue;
910 : }
911 528 : if(chamber->GetNClusters() < fgNTimeBins*fkRecoParam ->GetFindableClusters()){
912 2 : t.SetErrStat(AliTRDtrackV1::kNoClusters, ily);
913 10 : AliDebug(4, "Failed Not Enough Clusters in Detector");
914 2 : continue;
915 : }
916 : // build tracklet
917 262 : tracklet.~AliTRDseedV1();
918 524 : ptrTracklet = new(&tracklet) AliTRDseedV1(det);
919 262 : ptrTracklet->SetReconstructor(fkReconstructor);
920 262 : ptrTracklet->SetKink(t.IsKink());
921 524 : ptrTracklet->SetPrimary(t.IsPrimary());
922 524 : ptrTracklet->SetPadPlane(fGeom->GetPadPlane(ily, stk));
923 : //set first approximation of radial position of anode wire corresponding to middle chamber y=0, z=0
924 : // the uncertainty is given by the actual position of the tracklet (y,z) and chamber inclination
925 262 : ptrTracklet->SetX0(glb[0]+driftLength);
926 524 : if(!ptrTracklet->Init(&t)){
927 : n=-1;
928 0 : t.SetErrStat(AliTRDtrackV1::kTrackletInit);
929 0 : AliDebug(4, "Failed Tracklet Init");
930 0 : break;
931 : }
932 : // Select attachment base on track to B field sign not only track charge which is buggy
933 : // mark kFALSE same sign tracks and kTRUE opposite sign tracks
934 : // A.Bercuci 3.11.2011
935 524 : if(!ptrTracklet->AttachClusters(chamber, kTRUE, prod<0.?kTRUE:kFALSE, fEventInFile)){
936 34 : t.SetErrStat(AliTRDtrackV1::kNoAttach, ily);
937 34 : if(debugLevel>3){
938 0 : AliTRDseedV1 trackletCp(*ptrTracklet);
939 0 : UChar_t status(t.GetStatusTRD(ily));
940 0 : (*cstreamer) << "FollowBackProlongation4"
941 0 : <<"status=" << status
942 0 : <<"tracklet.=" << &trackletCp
943 0 : << "\n";
944 0 : }
945 170 : AliDebug(4, "Failed Attach Clusters");
946 34 : continue;
947 : }
948 1140 : AliDebug(3, Form("Number of Clusters in Tracklet: %d", ptrTracklet->GetN()));
949 228 : if(ptrTracklet->GetN() < fgNTimeBins*fkRecoParam->GetFindableClusters()){
950 0 : t.SetErrStat(AliTRDtrackV1::kNoClustersTracklet, ily);
951 0 : if(debugLevel>3){
952 0 : AliTRDseedV1 trackletCp(*ptrTracklet);
953 0 : UChar_t status(t.GetStatusTRD(ily));
954 0 : (*cstreamer) << "FollowBackProlongation4"
955 0 : <<"status=" << status
956 0 : <<"tracklet.=" << &trackletCp
957 0 : << "\n";
958 0 : }
959 0 : AliDebug(4, "Failed N Clusters Attached");
960 0 : continue;
961 : }
962 228 : ptrTracklet->UpdateUsed();
963 402 : } else AliDebug(2, Form("Use external tracklet ly[%d]", ily));
964 : // propagate track to the radial position of the tracklet
965 :
966 : // fit tracklet in the local chamber coordinate system
967 : // tilt correction options
968 : // 0 : no correction
969 : // 2 : pseudo tilt correction
970 1368 : if(!ptrTracklet->FitRobust(fGeom->GetPadPlane(ily, stk), matrix, t.GetBz(), t.Charge(), 0, t.GetTgl())){
971 0 : t.SetErrStat(AliTRDtrackV1::kNoFit, ily);
972 0 : AliDebug(4, "Failed Tracklet Fit");
973 0 : continue;
974 : }
975 : // Calculate tracklet position in tracking coordinates
976 : // A.Bercuci 27.11.2013
977 228 : ptrTracklet->SetXYZ(matrix);
978 :
979 456 : x = ptrTracklet->GetX(); //GetX0();
980 912 : if(x > (AliTRDReconstructor::GetMaxStep() + t.GetX()) && !PropagateToX(t, x, AliTRDReconstructor::GetMaxStep())) {
981 : n=-1;
982 0 : t.SetErrStat(AliTRDtrackV1::kPropagation);
983 0 : AliDebug(4, Form("Failed Propagation to Tracklet x[%7.2f]", x));
984 0 : break;
985 : }
986 456 : if(!AdjustSector(&t)) {
987 : n=-1;
988 0 : t.SetErrStat(AliTRDtrackV1::kAdjustSector);
989 0 : AliDebug(4, "Failed Adjust Sector");
990 0 : break;
991 : }
992 456 : if(TMath::Abs(t.GetSnp()) > AliTRDReconstructor::GetMaxSnp()) {
993 : n=-1;
994 0 : t.SetErrStat(AliTRDtrackV1::kSnp);
995 0 : AliDebug(4, Form("Failed Max Snp[%f] MaxSnp[%f]", t.GetSnp(), AliTRDReconstructor::GetMaxSnp()));
996 0 : break;
997 : }
998 228 : Double_t cov[3]; ptrTracklet->GetCovAt(x, cov);
999 684 : Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()};
1000 684 : Double_t chi2 = ((AliExternalTrackParam)t).GetPredictedChi2(p, cov);
1001 : /*
1002 : AliInfo(Form("Pl:%d X:%+e : %+e P: %+e %+e Cov:%+e %+e %+e -> dXY: %+e %+e | chi2:%.2f pT:%.2f alp:%.3f",
1003 : ily,x,t.GetX(),p[0],p[1],cov[0],cov[1],cov[2],
1004 : p[0]-t.GetY(),p[1]-t.GetZ(),
1005 : chi2,t.Pt()*t.Charge(),t.GetAlpha()));
1006 : */
1007 :
1008 228 : if(fkReconstructor->IsDebugStreaming()){
1009 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1010 : // TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1011 0 : AliExternalTrackParam param0(t);
1012 0 : AliExternalTrackParam param1(t);
1013 0 : param1.Update(p, cov);
1014 0 : TVectorD vcov(3,cov);
1015 0 : TVectorD vpar(3,p);
1016 0 : (*cstreamer) << "FollowBackProlongationInfo"
1017 0 : << "EventNumber=" << eventNumber
1018 0 : << "chi2="<<chi2
1019 0 : << "iplane="<<ily
1020 0 : << "vcov.="<<&vcov
1021 0 : << "vpar.="<<&vpar
1022 0 : << "tracklet.=" << ptrTracklet
1023 0 : << "param0.=" << ¶m0
1024 0 : << "param1.=" << ¶m1
1025 0 : << "\n";
1026 0 : }
1027 :
1028 : // update Kalman with the TRD measurement
1029 228 : if (chi2> chi2Cut){ // MI parameterizad chi2 cut 03.05.2014
1030 22 : t.SetErrStat(AliTRDtrackV1::kChi2, ily);
1031 22 : if(debugLevel > 2){
1032 0 : UChar_t status(t.GetStatusTRD());
1033 0 : AliTRDseedV1 trackletCp(*ptrTracklet);
1034 0 : AliTRDtrackV1 trackCp(t);
1035 0 : trackCp.SetOwner();
1036 0 : (*cstreamer) << "FollowBackProlongation3"
1037 0 : << "status=" << status
1038 0 : << "tracklet.=" << &trackletCp
1039 0 : << "track.=" << &trackCp
1040 0 : << "\n";
1041 0 : }
1042 110 : AliDebug(4, Form("Failed Chi2[%f]", chi2));
1043 22 : continue;
1044 : }
1045 : // mark track as entering the FIDUCIAL volume of TRD
1046 206 : if(kStoreIn){
1047 42 : t.SetTrackIn();
1048 : kStoreIn = kFALSE;
1049 42 : }
1050 206 : if(kUseTRD){
1051 412 : if(!((AliExternalTrackParam&)t).Update(p, cov)) {
1052 : n=-1;
1053 0 : t.SetErrStat(AliTRDtrackV1::kUpdate);
1054 0 : if(debugLevel > 2){
1055 0 : UChar_t status(t.GetStatusTRD());
1056 0 : AliTRDseedV1 trackletCp(*ptrTracklet);
1057 0 : AliTRDtrackV1 trackCp(t);
1058 0 : trackCp.SetOwner();
1059 0 : (*cstreamer) << "FollowBackProlongation3"
1060 0 : << "status=" << status
1061 0 : << "tracklet.=" << &trackletCp
1062 0 : << "track.=" << &trackCp
1063 0 : << "\n";
1064 0 : }
1065 0 : AliDebug(4, Form("Failed Track Update @ y[%7.2f] z[%7.2f] s2y[%f] s2z[%f] covyz[%f]", p[0], p[1], cov[0], cov[2], cov[1]));
1066 0 : break;
1067 : }
1068 : }
1069 412 : if(!kStandAlone) ptrTracklet->UseClusters();
1070 : // fill residuals ?!
1071 412 : AliTracker::FillResiduals(&t, p, cov, ptrTracklet->GetVolumeId());
1072 :
1073 :
1074 : // register tracklet with the tracker and track
1075 : // Save inside the tracklet the track parameters BEFORE track update.
1076 : // Commented out their overwriting AFTER track update
1077 : // A.Bercuci 3.11.2011
1078 : //ptrTracklet->Update(&t);
1079 206 : ptrTracklet = SetTracklet(ptrTracklet);
1080 412 : Int_t index(fTracklets->GetEntriesFast()-1);
1081 206 : t.SetTracklet(ptrTracklet, index);
1082 : // Register info to track
1083 206 : t.SetNumberOfClusters();
1084 206 : t.UpdateChi2(chi2);
1085 :
1086 206 : n += ptrTracklet->GetN();
1087 1030 : AliDebug(2, Form("Setting Tracklet[%d] @ Idx[%d]", ily, index));
1088 :
1089 : // Reset material budget if 2 consecutive gold
1090 : // if(ilayer>0 && t.GetTracklet(ilayer-1) && ptrTracklet->GetN() + t.GetTracklet(ilayer-1)->GetN() > 20) t.SetBudget(2, 0.);
1091 :
1092 : // Make backup of the track until is gold
1093 : Int_t failed(0);
1094 1648 : if(!kStandAlone && (failed = t.MakeBackupTrack())) AliDebug(2, Form("Failed backup on cut[%d]", failed));
1095 :
1096 974 : } // end layers loop
1097 : //printf("clusters[%d] chi2[%f] x[%f] status[%d ", n, t.GetChi2(), t.GetX(), t.GetStatusTRD());
1098 : //for(int i=0; i<6; i++) printf("%d ", t.GetStatusTRD(i)); printf("]\n");
1099 :
1100 106 : if(n && debugLevel > 1){
1101 : //Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1102 0 : AliTRDtrackV1 track(t);
1103 0 : track.SetOwner();
1104 0 : (*cstreamer) << "FollowBackProlongation2"
1105 0 : << "EventNumber=" << fEventInFile
1106 0 : << "track.=" << &track
1107 0 : << "\n";
1108 0 : }
1109 :
1110 : return n;
1111 106 : }
1112 :
1113 : //_________________________________________________________________________
1114 : Float_t AliTRDtrackerV1::FitRieman(AliTRDseedV1 *tracklets, Double_t *chi2, Int_t *const planes){
1115 : //
1116 : // Fits a Riemann-circle to the given points without tilting pad correction.
1117 : // The fit is performed using an instance of the class AliRieman (equations
1118 : // and transformations see documentation of this class)
1119 : // Afterwards all the tracklets are Updated
1120 : //
1121 : // Parameters: - Array of tracklets (AliTRDseedV1)
1122 : // - Storage for the chi2 values (beginning with direction z)
1123 : // - Seeding configuration
1124 : // Output: - The curvature
1125 : //
1126 0 : AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
1127 0 : fitter->Reset();
1128 0 : Int_t allplanes[] = {0, 1, 2, 3, 4, 5};
1129 0 : Int_t *ppl = &allplanes[0];
1130 : Int_t maxLayers = 6;
1131 0 : if(planes){
1132 : maxLayers = 4;
1133 : ppl = planes;
1134 0 : }
1135 0 : for(Int_t il = 0; il < maxLayers; il++){
1136 0 : if(!tracklets[ppl[il]].IsOK()) continue;
1137 0 : fitter->AddPoint(tracklets[ppl[il]].GetX0(), tracklets[ppl[il]].GetYfit(0), tracklets[ppl[il]].GetZfit(0),1,10);
1138 0 : }
1139 0 : fitter->Update();
1140 : // Set the reference position of the fit and calculate the chi2 values
1141 0 : memset(chi2, 0, sizeof(Double_t) * 2);
1142 0 : for(Int_t il = 0; il < maxLayers; il++){
1143 : // Reference positions
1144 0 : tracklets[ppl[il]].Init(fitter);
1145 :
1146 : // chi2
1147 0 : if((!tracklets[ppl[il]].IsOK()) && (!planes)) continue;
1148 0 : chi2[0] += tracklets[ppl[il]].GetChi2Y();
1149 0 : chi2[1] += tracklets[ppl[il]].GetChi2Z();
1150 0 : }
1151 0 : return fitter->GetC();
1152 0 : }
1153 :
1154 : //_________________________________________________________________________
1155 : void AliTRDtrackerV1::FitRieman(AliTRDcluster **seedcl, Double_t chi2[2])
1156 : {
1157 : //
1158 : // Performs a Riemann helix fit using the seedclusters as spacepoints
1159 : // Afterwards the chi2 values are calculated and the seeds are updated
1160 : //
1161 : // Parameters: - The four seedclusters
1162 : // - The tracklet array (AliTRDseedV1)
1163 : // - The seeding configuration
1164 : // - Chi2 array
1165 : //
1166 : // debug level 2
1167 : //
1168 0 : AliRieman *fitter = AliTRDtrackerV1::GetRiemanFitter();
1169 0 : fitter->Reset();
1170 0 : for(Int_t i = 0; i < 4; i++){
1171 0 : fitter->AddPoint(seedcl[i]->GetX(), seedcl[i]->GetY(), seedcl[i]->GetZ(), 1., 10.);
1172 : }
1173 0 : fitter->Update();
1174 :
1175 :
1176 : // Update the seed and calculated the chi2 value
1177 0 : chi2[0] = 0; chi2[1] = 0;
1178 0 : for(Int_t ipl = 0; ipl < kNSeedPlanes; ipl++){
1179 : // chi2
1180 0 : chi2[0] += (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetZ() - fitter->GetZat(seedcl[ipl]->GetX()));
1181 0 : chi2[1] += (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX())) * (seedcl[ipl]->GetY() - fitter->GetYat(seedcl[ipl]->GetX()));
1182 : }
1183 0 : }
1184 :
1185 :
1186 : //_________________________________________________________________________
1187 : Float_t AliTRDtrackerV1::FitTiltedRiemanConstraint(AliTRDseedV1 *tracklets, Double_t zVertex)
1188 : {
1189 : //
1190 : // Fits a helix to the clusters. Pad tilting is considered. As constraint it is
1191 : // assumed that the vertex position is set to 0.
1192 : // This method is very usefull for high-pt particles
1193 : // Basis for the fit: (x - x0)^2 + (y - y0)^2 - R^2 = 0
1194 : // x0, y0: Center of the circle
1195 : // Measured y-position: ymeas = y - tan(phiT)(zc - zt)
1196 : // zc: center of the pad row
1197 : // Equation which has to be fitted (after transformation):
1198 : // a + b * u + e * v + 2*(ymeas + tan(phiT)(z - zVertex))*t = 0
1199 : // Transformation:
1200 : // t = 1/(x^2 + y^2)
1201 : // u = 2 * x * t
1202 : // v = 2 * x * tan(phiT) * t
1203 : // Parameters in the equation:
1204 : // a = -1/y0, b = x0/y0, e = dz/dx
1205 : //
1206 : // The Curvature is calculated by the following equation:
1207 : // - curv = a/Sqrt(b^2 + 1) = 1/R
1208 : // Parameters: - the 6 tracklets
1209 : // - the Vertex constraint
1210 : // Output: - the Chi2 value of the track
1211 : //
1212 : // debug level 5
1213 : //
1214 :
1215 0 : TLinearFitter *fitter = GetTiltedRiemanFitterConstraint();
1216 0 : fitter->StoreData(kTRUE);
1217 0 : fitter->ClearPoints();
1218 : AliTRDcluster *cl = NULL;
1219 :
1220 : Float_t x, y, z, w, t, error, tilt;
1221 0 : Double_t uvt[2];
1222 : Int_t nPoints = 0;
1223 0 : for(Int_t ilr = 0; ilr < AliTRDgeometry::kNlayer; ilr++){
1224 0 : if(!tracklets[ilr].IsOK()) continue;
1225 0 : for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
1226 0 : if(!tracklets[ilr].IsUsable(itb)) continue;
1227 0 : if(!(cl = tracklets[ilr].GetClusters(itb))) continue;
1228 0 : if(!cl->IsInChamber()) continue;
1229 0 : x = cl->GetX();
1230 0 : y = cl->GetY();
1231 0 : z = cl->GetZ();
1232 0 : tilt = tracklets[ilr].GetTilt();
1233 : // Transformation
1234 0 : t = 1./(x * x + y * y);
1235 0 : uvt[0] = 2. * x * t;
1236 0 : uvt[1] = 2. * x * t * tilt ;
1237 0 : w = 2. * (y + tilt * (z - zVertex)) * t;
1238 0 : error = 2. * TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) * t;
1239 0 : fitter->AddPoint(uvt, w, error);
1240 0 : nPoints++;
1241 0 : }
1242 0 : }
1243 0 : fitter->Eval();
1244 :
1245 : // Calculate curvature
1246 0 : Double_t a = fitter->GetParameter(0);
1247 0 : Double_t b = fitter->GetParameter(1);
1248 0 : Double_t curvature = a/TMath::Sqrt(b*b + 1);
1249 :
1250 : Float_t chi2track = 0.0;
1251 0 : if (nPoints > 0) {
1252 0 : chi2track = fitter->GetChisquare()/Double_t(nPoints);
1253 0 : }
1254 0 : for(Int_t ip = 0; ip < AliTRDtrackerV1::kNPlanes; ip++)
1255 0 : tracklets[ip].SetC(curvature, 1);
1256 :
1257 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitTiltedRiemanConstraint: Chi2[%f] C[%5.2e] pt[%8.3f]\n", chi2track, curvature, GetBz()*kB2C/curvature);
1258 :
1259 : /* if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker()) >= 5){
1260 : //Linear Model on z-direction
1261 : Double_t xref = CalculateReferenceX(tracklets); // Relative to the middle of the stack
1262 : Double_t slope = fitter->GetParameter(2);
1263 : Double_t zref = slope * xref;
1264 : Float_t chi2Z = CalculateChi2Z(tracklets, zref, slope, xref);
1265 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1266 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1267 : TTreeSRedirector &treeStreamer = *fkReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
1268 : treeStreamer << "FitTiltedRiemanConstraint"
1269 : << "EventNumber=" << eventNumber
1270 : << "CandidateNumber=" << candidateNumber
1271 : << "Curvature=" << curvature
1272 : << "Chi2Track=" << chi2track
1273 : << "Chi2Z=" << chi2Z
1274 : << "zref=" << zref
1275 : << "\n";
1276 : }*/
1277 0 : return chi2track;
1278 0 : }
1279 :
1280 : //_________________________________________________________________________
1281 : Float_t AliTRDtrackerV1::FitTiltedRieman(AliTRDseedV1 *tracklets, Bool_t sigError)
1282 : {
1283 : //
1284 : // Performs a Riemann fit taking tilting pad correction into account
1285 : // The equation of a Riemann circle, where the y position is substituted by the
1286 : // measured y-position taking pad tilting into account, has to be transformed
1287 : // into a 4-dimensional hyperplane equation
1288 : // Riemann circle: (x-x0)^2 + (y-y0)^2 -R^2 = 0
1289 : // Measured y-Position: ymeas = y - tan(phiT)(zc - zt)
1290 : // zc: center of the pad row
1291 : // zt: z-position of the track
1292 : // The z-position of the track is assumed to be linear dependent on the x-position
1293 : // Transformed equation: a + b * u + c * t + d * v + e * w - 2 * (ymeas + tan(phiT) * zc) * t = 0
1294 : // Transformation: u = 2 * x * t
1295 : // v = 2 * tan(phiT) * t
1296 : // w = 2 * tan(phiT) * (x - xref) * t
1297 : // t = 1 / (x^2 + ymeas^2)
1298 : // Parameters: a = -1/y0
1299 : // b = x0/y0
1300 : // c = (R^2 -x0^2 - y0^2)/y0
1301 : // d = offset
1302 : // e = dz/dx
1303 : // If the offset respectively the slope in z-position is impossible, the parameters are fixed using
1304 : // results from the simple riemann fit. Afterwards the fit is redone.
1305 : // The curvature is calculated according to the formula:
1306 : // curv = a/(1 + b^2 + c*a) = 1/R
1307 : //
1308 : // Paramters: - Array of tracklets (connected to the track candidate)
1309 : // - Flag selecting the error definition
1310 : // Output: - Chi2 values of the track (in Parameter list)
1311 : //
1312 0 : TLinearFitter *fitter = GetTiltedRiemanFitter();
1313 0 : fitter->StoreData(kTRUE);
1314 0 : fitter->ClearPoints();
1315 0 : AliTRDLeastSquare zfitter;
1316 : AliTRDcluster *cl = NULL;
1317 :
1318 0 : Double_t xref = CalculateReferenceX(tracklets);
1319 0 : Double_t x, y, z, t, tilt, dx, w, we, erry, errz;
1320 0 : Double_t uvt[4], sumPolY[5], sumPolZ[3];
1321 0 : memset(sumPolY, 0, sizeof(Double_t) * 5);
1322 0 : memset(sumPolZ, 0, sizeof(Double_t) * 3);
1323 : Int_t nPoints = 0;
1324 : // Containers for Least-square fitter
1325 0 : for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1326 0 : if(!tracklets[ipl].IsOK()) continue;
1327 0 : tilt = tracklets[ipl].GetTilt();
1328 0 : for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
1329 0 : if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1330 0 : if(!cl->IsInChamber()) continue;
1331 0 : if (!tracklets[ipl].IsUsable(itb)) continue;
1332 0 : x = cl->GetX();
1333 0 : y = cl->GetY();
1334 0 : z = cl->GetZ();
1335 0 : dx = x - xref;
1336 : // Transformation
1337 0 : t = 1./(x*x + y*y);
1338 0 : uvt[0] = 2. * x * t;
1339 0 : uvt[1] = t;
1340 0 : uvt[2] = 2. * tilt * t;
1341 0 : uvt[3] = 2. * tilt * dx * t;
1342 0 : w = 2. * (y + tilt*z) * t;
1343 : // error definition changes for the different calls
1344 0 : we = 2. * t;
1345 0 : we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2()) : 0.2;
1346 0 : fitter->AddPoint(uvt, w, we);
1347 0 : zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1348 : // adding points for covariance matrix estimation
1349 0 : erry = 1./(TMath::Sqrt(cl->GetSigmaY2()) + 0.1); // 0.1 is a systematic error (due to misalignment and miscalibration)
1350 0 : erry *= erry;
1351 0 : errz = 1./cl->GetSigmaZ2();
1352 0 : for(Int_t ipol = 0; ipol < 5; ipol++){
1353 0 : sumPolY[ipol] += erry;
1354 0 : erry *= x;
1355 0 : if(ipol < 3){
1356 0 : sumPolZ[ipol] += errz;
1357 0 : errz *= x;
1358 0 : }
1359 : }
1360 0 : nPoints++;
1361 0 : }
1362 0 : }
1363 0 : if (fitter->Eval()) return 1.e10;
1364 0 : zfitter.Eval();
1365 :
1366 0 : Double_t offset = fitter->GetParameter(3);
1367 0 : Double_t slope = fitter->GetParameter(4);
1368 :
1369 : // Linear fitter - not possible to make boundaries
1370 : // Do not accept non possible z and dzdx combinations
1371 : Bool_t acceptablez = kTRUE;
1372 : Double_t zref = 0.0;
1373 0 : for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
1374 0 : if(!tracklets[iLayer].IsOK()) continue;
1375 0 : zref = offset + slope * (tracklets[iLayer].GetX0() - xref);
1376 0 : if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
1377 0 : acceptablez = kFALSE;
1378 : }
1379 0 : if (!acceptablez) {
1380 0 : Double_t dzmf = zfitter.GetFunctionParameter(1);
1381 0 : Double_t zmf = zfitter.GetFunctionValue(&xref);
1382 0 : fgTiltedRieman->FixParameter(3, zmf);
1383 0 : fgTiltedRieman->FixParameter(4, dzmf);
1384 0 : fitter->Eval();
1385 0 : fitter->ReleaseParameter(3);
1386 0 : fitter->ReleaseParameter(4);
1387 0 : offset = fitter->GetParameter(3);
1388 0 : slope = fitter->GetParameter(4);
1389 0 : }
1390 :
1391 : // Calculate Curvarture
1392 0 : Double_t a = fitter->GetParameter(0);
1393 0 : Double_t b = fitter->GetParameter(1);
1394 0 : Double_t c = fitter->GetParameter(2);
1395 0 : Double_t curvature = 1.0 + b*b - c*a;
1396 0 : if (curvature > 0.0) curvature = a / TMath::Sqrt(curvature);
1397 :
1398 0 : Double_t chi2track = fitter->GetChisquare()/Double_t(nPoints);
1399 :
1400 : // Prepare error calculation
1401 0 : TMatrixD covarPolY(3,3);
1402 0 : covarPolY(0,0) = sumPolY[0]; covarPolY(1,1) = sumPolY[2]; covarPolY(2,2) = sumPolY[4];
1403 0 : covarPolY(0,1) = covarPolY(1,0) = sumPolY[1];
1404 0 : covarPolY(0,2) = covarPolY(2,0) = sumPolY[2];
1405 0 : covarPolY(2,1) = covarPolY(1,2) = sumPolY[3];
1406 0 : covarPolY.Invert();
1407 0 : TMatrixD covarPolZ(2,2);
1408 0 : covarPolZ(0,0) = sumPolZ[0]; covarPolZ(1,1) = sumPolZ[2];
1409 0 : covarPolZ(1,0) = covarPolZ(0,1) = sumPolZ[1];
1410 0 : covarPolZ.Invert();
1411 :
1412 : // Update the tracklets
1413 : Double_t dy, dz;
1414 0 : Double_t cov[15];
1415 0 : memset(cov, 0, sizeof(Double_t) * 15);
1416 0 : for(Int_t iLayer = 0; iLayer < AliTRDtrackerV1::kNPlanes; iLayer++) {
1417 :
1418 0 : x = tracklets[iLayer].GetX0();
1419 : // x1 = x - xref;
1420 : y = 0;
1421 : z = 0;
1422 : dy = 0;
1423 : dz = 0;
1424 0 : memset(cov, 0, sizeof(Double_t) * 3);
1425 0 : TMatrixD transform(3,3);
1426 0 : transform(0,0) = 1;
1427 0 : transform(0,1) = x;
1428 0 : transform(0,2) = x*x;
1429 0 : transform(1,1) = 1;
1430 0 : transform(1,2) = x;
1431 0 : transform(2,2) = 1;
1432 0 : TMatrixD covariance(transform, TMatrixD::kMult, covarPolY);
1433 0 : covariance *= transform.T();
1434 0 : TMatrixD transformZ(2,2);
1435 0 : transformZ(0,0) = transformZ(1,1) = 1;
1436 0 : transformZ(0,1) = x;
1437 0 : TMatrixD covarZ(transformZ, TMatrixD::kMult, covarPolZ);
1438 0 : covarZ *= transformZ.T();
1439 : // y: R^2 = (x - x0)^2 + (y - y0)^2
1440 : // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1441 : // R = Sqrt() = 1/Curvature
1442 : // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
1443 0 : Double_t res = (x * a + b); // = (x - x0)/y0
1444 0 : res *= res;
1445 0 : res = 1.0 - c * a + b * b - res; // = (R^2 - (x - x0)^2)/y0^2
1446 0 : if (res >= 0) {
1447 0 : res = TMath::Sqrt(res);
1448 0 : y = (1.0 - res) / a;
1449 0 : }
1450 0 : cov[0] = covariance(0,0);
1451 0 : cov[2] = covarZ(0,0);
1452 0 : cov[1] = 0.;
1453 :
1454 : // dy: R^2 = (x - x0)^2 + (y - y0)^2
1455 : // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0
1456 : // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1457 : // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
1458 : // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2)
1459 0 : Double_t x0 = -b / a;
1460 0 : if (-c * a + b * b + 1 > 0) {
1461 0 : if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
1462 0 : Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
1463 0 : if (a < 0) yderiv *= -1.0;
1464 : dy = yderiv;
1465 0 : }
1466 : }
1467 0 : z = offset + slope * (x - xref);
1468 : dz = slope;
1469 0 : tracklets[iLayer].SetYref(0, y);
1470 0 : tracklets[iLayer].SetYref(1, dy);
1471 0 : tracklets[iLayer].SetZref(0, z);
1472 0 : tracklets[iLayer].SetZref(1, dz);
1473 0 : tracklets[iLayer].SetC(curvature);
1474 0 : tracklets[iLayer].SetCovRef(cov);
1475 0 : tracklets[iLayer].SetChi2(chi2track);
1476 0 : }
1477 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitTiltedRieman: Chi2[%f] C[%5.2e] pt[%8.3f]\n", chi2track, curvature, GetBz()*kB2C/curvature);
1478 :
1479 : /* if(fkReconstructor->GetRecoParam()->GetStreamLevel(AliTRDrecoParam::kTracker) >=5){
1480 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1481 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
1482 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
1483 : Double_t chi2z = CalculateChi2Z(tracklets, offset, slope, xref);
1484 : cstreamer << "FitTiltedRieman0"
1485 : << "EventNumber=" << eventNumber
1486 : << "CandidateNumber=" << candidateNumber
1487 : << "xref=" << xref
1488 : << "Chi2Z=" << chi2z
1489 : << "\n";
1490 : }*/
1491 0 : return chi2track;
1492 0 : }
1493 :
1494 :
1495 : //____________________________________________________________________
1496 : Double_t AliTRDtrackerV1::FitLine(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t err, Int_t np, AliTrackPoint *points)
1497 : {
1498 : //
1499 : // Fit track with a staight line
1500 : // Fills an AliTrackPoint array with np points
1501 : // Function should be used to refit tracks when no magnetic field was on
1502 : //
1503 0 : AliTRDLeastSquare yfitter, zfitter;
1504 : AliTRDcluster *cl = NULL;
1505 :
1506 0 : AliTRDseedV1 work[kNPlanes], *tracklet = NULL;
1507 0 : if(!tracklets){
1508 0 : for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1509 0 : if(!(tracklet = track->GetTracklet(ipl))) continue;
1510 0 : if(!tracklet->IsOK()) continue;
1511 0 : new(&work[ipl]) AliTRDseedV1(*tracklet);
1512 : }
1513 0 : tracklets = &work[0];
1514 0 : }
1515 :
1516 0 : Double_t xref = CalculateReferenceX(tracklets);
1517 0 : Double_t x, y, z, dx, ye, yr, tilt;
1518 0 : for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1519 0 : if(!tracklets[ipl].IsOK()) continue;
1520 0 : for(Int_t itb = 0; itb < fgNTimeBins; itb++){
1521 0 : if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1522 0 : if (!tracklets[ipl].IsUsable(itb)) continue;
1523 0 : x = cl->GetX();
1524 0 : z = cl->GetZ();
1525 0 : dx = x - xref;
1526 0 : zfitter.AddPoint(&dx, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1527 0 : }
1528 0 : }
1529 0 : zfitter.Eval();
1530 0 : Double_t z0 = zfitter.GetFunctionParameter(0);
1531 0 : Double_t dzdx = zfitter.GetFunctionParameter(1);
1532 0 : for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1533 0 : if(!tracklets[ipl].IsOK()) continue;
1534 0 : for(Int_t itb = 0; itb < fgNTimeBins; itb++){
1535 0 : if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1536 0 : if (!tracklets[ipl].IsUsable(itb)) continue;
1537 0 : x = cl->GetX();
1538 0 : y = cl->GetY();
1539 0 : z = cl->GetZ();
1540 0 : tilt = tracklets[ipl].GetTilt();
1541 0 : dx = x - xref;
1542 0 : yr = y + tilt*(z - z0 - dzdx*dx);
1543 : // error definition changes for the different calls
1544 0 : ye = tilt*TMath::Sqrt(cl->GetSigmaZ2());
1545 0 : ye += err ? tracklets[ipl].GetSigmaY() : 0.2;
1546 0 : yfitter.AddPoint(&dx, yr, ye);
1547 0 : }
1548 0 : }
1549 0 : yfitter.Eval();
1550 0 : Double_t y0 = yfitter.GetFunctionParameter(0);
1551 0 : Double_t dydx = yfitter.GetFunctionParameter(1);
1552 : Double_t chi2 = 0.;//yfitter.GetChisquare()/Double_t(nPoints);
1553 :
1554 : //update track points array
1555 0 : if(np && points){
1556 0 : Float_t xyz[3];
1557 0 : for(int ip=0; ip<np; ip++){
1558 0 : points[ip].GetXYZ(xyz);
1559 0 : xyz[1] = y0 + dydx * (xyz[0] - xref);
1560 0 : xyz[2] = z0 + dzdx * (xyz[0] - xref);
1561 0 : points[ip].SetXYZ(xyz);
1562 : }
1563 0 : }
1564 : return chi2;
1565 0 : }
1566 :
1567 :
1568 : //_________________________________________________________________________
1569 : Double_t AliTRDtrackerV1::FitRiemanTilt(const AliTRDtrackV1 *track, AliTRDseedV1 *tracklets, Bool_t sigError, Int_t np, AliTrackPoint *points)
1570 : {
1571 : //
1572 : // Performs a Riemann fit taking tilting pad correction into account
1573 : //
1574 : // Paramters: - Array of tracklets (connected to the track candidate)
1575 : // - Flag selecting the error definition
1576 : // Output: - Chi2 values of the track (in Parameter list)
1577 : //
1578 : // The equations which has to be solved simultaneously are:
1579 : // BEGIN_LATEX
1580 : // R^{2} = (x-x_{0})^{2} + (y^{*}-y_{0})^{2}
1581 : // y^{*} = y - tg(h)(z - z_{t})
1582 : // z_{t} = z_{0}+dzdx*(x-x_{r})
1583 : // END_LATEX
1584 : // with (x, y, z) the coordinate of the cluster, (x_0, y_0, z_0) the coordinate of the center of the Riemann circle,
1585 : // R its radius, x_r a constant refrence radial position in the middle of the TRD stack and dzdx the slope of the
1586 : // track in the x-z plane. Using the following transformations
1587 : // BEGIN_LATEX
1588 : // t = 1 / (x^{2} + y^{2})
1589 : // u = 2 * x * t
1590 : // v = 2 * tan(h) * t
1591 : // w = 2 * tan(h) * (x - x_{r}) * t
1592 : // END_LATEX
1593 : // One gets the following linear equation
1594 : // BEGIN_LATEX
1595 : // a + b * u + c * t + d * v + e * w = 2 * (y + tg(h) * z) * t
1596 : // END_LATEX
1597 : // where the coefficients have the following meaning
1598 : // BEGIN_LATEX
1599 : // a = -1/y_{0}
1600 : // b = x_{0}/y_{0}
1601 : // c = (R^{2} -x_{0}^{2} - y_{0}^{2})/y_{0}
1602 : // d = z_{0}
1603 : // e = dz/dx
1604 : // END_LATEX
1605 : // The error calculation for the free term is thus
1606 : // BEGIN_LATEX
1607 : // #sigma = 2 * #sqrt{#sigma^{2}_{y} + (tilt corr ...) + tg^{2}(h) * #sigma^{2}_{z}} * t
1608 : // END_LATEX
1609 : //
1610 : // From this simple model one can compute chi^2 estimates and a rough approximation of pt from the curvature according
1611 : // to the formula:
1612 : // BEGIN_LATEX
1613 : // C = 1/R = a/(1 + b^{2} + c*a)
1614 : // END_LATEX
1615 : //
1616 : // Authors
1617 : // M.Ivanov <M.Ivanov@gsi.de>
1618 : // A.Bercuci <A.Bercuci@gsi.de>
1619 : // M.Fasel <M.Fasel@gsi.de>
1620 :
1621 0 : TLinearFitter *fitter = GetTiltedRiemanFitter();
1622 0 : fitter->StoreData(kTRUE);
1623 0 : fitter->ClearPoints();
1624 0 : AliTRDLeastSquare zfitter;
1625 : AliTRDcluster *cl = NULL;
1626 :
1627 0 : AliTRDseedV1 work[kNPlanes], *tracklet = NULL;
1628 0 : if(!tracklets){
1629 0 : for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1630 0 : if(!(tracklet = track->GetTracklet(ipl))) continue;
1631 0 : if(!tracklet->IsOK()) continue;
1632 0 : new(&work[ipl]) AliTRDseedV1(*tracklet);
1633 : }
1634 0 : tracklets = &work[0];
1635 0 : }
1636 :
1637 0 : Double_t xref = CalculateReferenceX(tracklets);
1638 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitRiemanTilt:\nx0[(0)%6.2f (1)%6.2f (2)%6.2f (3)%6.2f (4)%6.2f (5)%6.2f] xref[%6.2f]", tracklets[0].GetX0(), tracklets[1].GetX0(), tracklets[2].GetX0(), tracklets[3].GetX0(), tracklets[4].GetX0(), tracklets[5].GetX0(), xref);
1639 0 : Double_t x, y, z, t, tilt, dx, w, we;
1640 0 : Double_t uvt[4];
1641 : Int_t nPoints = 0;
1642 : // Containers for Least-square fitter
1643 0 : for(Int_t ipl = 0; ipl < kNPlanes; ipl++){
1644 0 : if(!tracklets[ipl].IsOK()) continue;
1645 0 : for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
1646 0 : if(!(cl = tracklets[ipl].GetClusters(itb))) continue;
1647 : //if (!tracklets[ipl].IsUsable(itb)) continue;
1648 0 : x = cl->GetX();
1649 0 : y = cl->GetY();
1650 0 : z = cl->GetZ();
1651 0 : tilt = tracklets[ipl].GetTilt();
1652 0 : dx = x - xref;
1653 : // Transformation
1654 0 : t = 1./(x*x + y*y);
1655 0 : uvt[0] = 2. * x * t;
1656 0 : uvt[1] = t;
1657 0 : uvt[2] = 2. * tilt * t;
1658 0 : uvt[3] = 2. * tilt * dx * t;
1659 0 : w = 2. * (y + tilt*z) * t;
1660 : // error definition changes for the different calls
1661 0 : we = 2. * t;
1662 0 : we *= sigError ? TMath::Sqrt(cl->GetSigmaY2()) : 0.2;
1663 0 : fitter->AddPoint(uvt, w, we);
1664 0 : zfitter.AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
1665 0 : nPoints++;
1666 0 : }
1667 0 : }
1668 0 : if(fitter->Eval()) return 1.E10;
1669 :
1670 0 : Double_t z0 = fitter->GetParameter(3);
1671 0 : Double_t dzdx = fitter->GetParameter(4);
1672 :
1673 :
1674 : // Linear fitter - not possible to make boundaries
1675 : // Do not accept non possible z and dzdx combinations
1676 : Bool_t accept = kTRUE;
1677 : Double_t zref = 0.0;
1678 0 : for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
1679 0 : if(!tracklets[iLayer].IsOK()) continue;
1680 0 : zref = z0 + dzdx * (tracklets[iLayer].GetX0() - xref);
1681 0 : if (TMath::Abs(tracklets[iLayer].GetZfit(0) - zref) > tracklets[iLayer].GetPadLength() * 0.5 + 1.0)
1682 0 : accept = kFALSE;
1683 : }
1684 0 : if (!accept) {
1685 0 : zfitter.Eval();
1686 0 : Double_t dzmf = zfitter.GetFunctionParameter(1);
1687 0 : Double_t zmf = zfitter.GetFunctionValue(&xref);
1688 0 : fitter->FixParameter(3, zmf);
1689 0 : fitter->FixParameter(4, dzmf);
1690 0 : fitter->Eval();
1691 0 : fitter->ReleaseParameter(3);
1692 0 : fitter->ReleaseParameter(4);
1693 0 : z0 = fitter->GetParameter(3); // = zmf ?
1694 0 : dzdx = fitter->GetParameter(4); // = dzmf ?
1695 0 : }
1696 :
1697 : // Calculate Curvature
1698 0 : Double_t a = fitter->GetParameter(0);
1699 0 : Double_t b = fitter->GetParameter(1);
1700 0 : Double_t c = fitter->GetParameter(2);
1701 0 : Double_t y0 = 1. / a;
1702 0 : Double_t x0 = -b * y0;
1703 0 : Double_t tmp = y0*y0 + x0*x0 - c*y0;
1704 0 : if(tmp<=0.) return 1.E10;
1705 0 : Double_t radius = TMath::Sqrt(tmp);
1706 0 : Double_t curvature = 1.0 + b*b - c*a;
1707 0 : if (curvature > 0.0) curvature = a / TMath::Sqrt(curvature);
1708 :
1709 : // Calculate chi2 of the fit
1710 0 : Double_t chi2 = fitter->GetChisquare()/Double_t(nPoints);
1711 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>3) printf("D-AliTRDtrackerV1::FitRiemanTilt:x0[%6.2f] y0[%6.2f] R[%6.2f] chi2[%f]\n", x0, y0, radius, chi2);
1712 :
1713 : // Update the tracklets
1714 0 : if(!track){
1715 0 : for(Int_t ip = 0; ip < kNPlanes; ip++) {
1716 0 : x = tracklets[ip].GetX0();
1717 0 : tmp = radius*radius-(x-x0)*(x-x0);
1718 0 : if(tmp <= 0.) continue;
1719 0 : tmp = TMath::Sqrt(tmp);
1720 :
1721 : // y: R^2 = (x - x0)^2 + (y - y0)^2
1722 : // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
1723 0 : tracklets[ip].SetYref(0, y0 - (y0>0.?1.:-1)*tmp);
1724 : // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
1725 0 : tracklets[ip].SetYref(1, (x - x0) / tmp);
1726 0 : tracklets[ip].SetZref(0, z0 + dzdx * (x - xref));
1727 0 : tracklets[ip].SetZref(1, dzdx);
1728 0 : tracklets[ip].SetC(curvature);
1729 0 : tracklets[ip].SetChi2(chi2);
1730 0 : }
1731 0 : }
1732 : //update track points array
1733 0 : if(np && points){
1734 0 : Float_t xyz[3];
1735 0 : for(int ip=0; ip<np; ip++){
1736 0 : points[ip].GetXYZ(xyz);
1737 0 : xyz[1] = TMath::Abs(xyz[0] - x0) > radius ? 100. : y0 - (y0>0.?1.:-1.)*TMath::Sqrt((radius-(xyz[0]-x0))*(radius+(xyz[0]-x0)));
1738 0 : xyz[2] = z0 + dzdx * (xyz[0] - xref);
1739 0 : points[ip].SetXYZ(xyz);
1740 : }
1741 0 : }
1742 :
1743 : return chi2;
1744 0 : }
1745 :
1746 :
1747 : //____________________________________________________________________
1748 : Double_t AliTRDtrackerV1::FitKalman(AliTRDtrackV1 *track, AliTRDseedV1 * const tracklets, Bool_t up, Int_t np, AliTrackPoint *points)
1749 : {
1750 : // Kalman filter implementation for the TRD.
1751 : // It returns the positions of the fit in the array "points"
1752 : //
1753 : // Author : A.Bercuci@gsi.de
1754 :
1755 : // printf("Start track @ x[%f]\n", track->GetX());
1756 :
1757 : //prepare marker points along the track
1758 0 : Int_t ip = np ? 0 : 1;
1759 0 : while(ip<np){
1760 0 : if((up?-1:1) * (track->GetX() - points[ip].GetX()) > 0.) break;
1761 : //printf("AliTRDtrackerV1::FitKalman() : Skip track marker x[%d] = %7.3f. Before track start ( %7.3f ).\n", ip, points[ip].GetX(), track->GetX());
1762 0 : ip++;
1763 : }
1764 : //if(points) printf("First marker point @ x[%d] = %f\n", ip, points[ip].GetX());
1765 :
1766 :
1767 0 : AliTRDseedV1 tracklet;
1768 : AliTRDseedV1 *ptrTracklet = NULL;
1769 :
1770 : //Loop through the TRD planes
1771 0 : for (Int_t jplane = 0; jplane < kNPlanes; jplane++) {
1772 : // GET TRACKLET OR BUILT IT
1773 0 : Int_t iplane = up ? jplane : kNPlanes - 1 - jplane;
1774 0 : if(tracklets){
1775 0 : if(!(ptrTracklet = &tracklets[iplane])) continue;
1776 : }else{
1777 0 : if(!(ptrTracklet = track->GetTracklet(iplane))){
1778 : /*AliTRDtrackerV1 *tracker = NULL;
1779 : if(!(tracker = dynamic_cast<AliTRDtrackerV1*>( AliTRDrecoParam:Tracker()))) continue;
1780 : ptrTracklet = new(&tracklet) AliTRDseedV1(iplane);
1781 : if(!tracker->MakeTracklet(ptrTracklet, track)) */
1782 0 : continue;
1783 : }
1784 : }
1785 0 : if(!ptrTracklet->IsOK()) continue;
1786 :
1787 0 : Double_t x = ptrTracklet->GetX0();
1788 :
1789 0 : while(ip < np){
1790 : //don't do anything if next marker is after next update point.
1791 0 : if((up?-1:1) * (points[ip].GetX() - x) - AliTRDReconstructor::GetMaxStep() < 0) break;
1792 0 : if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), AliTRDReconstructor::GetMaxStep())) return -1.;
1793 :
1794 0 : Double_t xyz[3]; // should also get the covariance
1795 0 : track->GetXYZ(xyz);
1796 0 : track->Global2LocalPosition(xyz, track->GetAlpha());
1797 0 : points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]);
1798 0 : ip++;
1799 0 : }
1800 : // printf("plane[%d] tracklet[%p] x[%f]\n", iplane, ptrTracklet, x);
1801 :
1802 : // Propagate closer to the next update point
1803 0 : if(((up?-1:1) * (x - track->GetX()) + AliTRDReconstructor::GetMaxStep() < 0) && !PropagateToX(*track, x + (up?-1:1)*AliTRDReconstructor::GetMaxStep(), AliTRDReconstructor::GetMaxStep())) return -1.;
1804 :
1805 0 : if(!AdjustSector(track)) return -1;
1806 0 : if(TMath::Abs(track->GetSnp()) > AliTRDReconstructor::GetMaxSnp()) return -1;
1807 :
1808 : //load tracklet to the tracker and the track
1809 : /* Int_t index;
1810 : if((index = FindTracklet(ptrTracklet)) < 0){
1811 : ptrTracklet = SetTracklet(&tracklet);
1812 : index = fTracklets->GetEntriesFast()-1;
1813 : }
1814 : track->SetTracklet(ptrTracklet, index);*/
1815 :
1816 :
1817 : // register tracklet to track with tracklet creation !!
1818 : // PropagateBack : loaded tracklet to the tracker and update index
1819 : // RefitInward : update index
1820 : // MakeTrack : loaded tracklet to the tracker and update index
1821 0 : if(!tracklets) track->SetTracklet(ptrTracklet, -1);
1822 :
1823 :
1824 : //Calculate the mean material budget along the path inside the chamber
1825 0 : Double_t xyz0[3]; track->GetXYZ(xyz0);
1826 0 : Double_t alpha = track->GetAlpha();
1827 0 : Double_t xyz1[3], y, z;
1828 0 : if(!track->GetProlongation(x, y, z)) return -1;
1829 0 : xyz1[0] = x * TMath::Cos(alpha) - y * TMath::Sin(alpha);
1830 0 : xyz1[1] = +x * TMath::Sin(alpha) + y * TMath::Cos(alpha);
1831 0 : xyz1[2] = z;
1832 0 : if(TMath::Abs(xyz0[0] - xyz1[0]) < 1e-3 && TMath::Abs(xyz0[1] - xyz1[1]) < 1e-3) continue; // check wheter we are at the same global x position
1833 0 : Double_t param[7];
1834 0 : if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param) <=0.) break;
1835 0 : Double_t xrho = param[0]*param[4]; // density*length
1836 0 : Double_t xx0 = param[1]; // radiation length
1837 :
1838 : //Propagate the track
1839 0 : track->PropagateTo(x, xx0, xrho);
1840 0 : if (!AdjustSector(track)) break;
1841 :
1842 : //Update track
1843 0 : Double_t cov[3]; ptrTracklet->GetCovAt(x, cov);
1844 0 : Double_t p[2] = { ptrTracklet->GetY(), ptrTracklet->GetZ()};
1845 0 : Double_t chi2 = ((AliExternalTrackParam*)track)->GetPredictedChi2(p, cov);
1846 0 : if(chi2<1e+10) ((AliExternalTrackParam*)track)->Update(p, cov);
1847 0 : if(!up) continue;
1848 :
1849 : //Reset material budget if 2 consecutive gold
1850 0 : if(iplane>0 && track->GetTracklet(iplane-1) && ptrTracklet->GetN() + track->GetTracklet(iplane-1)->GetN() > 20) track->SetBudget(2, 0.);
1851 0 : } // end planes loop
1852 :
1853 : // extrapolation
1854 0 : while(ip < np){
1855 0 : if(((up?-1:1) * (points[ip].GetX() - track->GetX()) < 0) && !PropagateToX(*track, points[ip].GetX(), AliTRDReconstructor::GetMaxStep())) return -1.;
1856 :
1857 0 : Double_t xyz[3]; // should also get the covariance
1858 0 : track->GetXYZ(xyz);
1859 0 : track->Global2LocalPosition(xyz, track->GetAlpha());
1860 0 : points[ip].SetXYZ(xyz[0], xyz[1], xyz[2]);
1861 0 : ip++;
1862 0 : }
1863 :
1864 0 : return track->GetChi2();
1865 0 : }
1866 :
1867 : //_________________________________________________________________________
1868 : Float_t AliTRDtrackerV1::CalculateChi2Z(const AliTRDseedV1 *tracklets, Double_t offset, Double_t slope, Double_t xref)
1869 : {
1870 : //
1871 : // Calculates the chi2-value of the track in z-Direction including tilting pad correction.
1872 : // A linear dependence on the x-value serves as a model.
1873 : // The parameters are related to the tilted Riemann fit.
1874 : // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
1875 : // - the offset for the reference x
1876 : // - the slope
1877 : // - the reference x position
1878 : // Output: - The Chi2 value of the track in z-Direction
1879 : //
1880 : Float_t chi2Z = 0, nLayers = 0;
1881 0 : for (Int_t iLayer = 0; iLayer < AliTRDgeometry::kNlayer; iLayer++) {
1882 0 : if(!tracklets[iLayer].IsOK()) continue;
1883 0 : Double_t z = offset + slope * (tracklets[iLayer].GetX0() - xref);
1884 0 : chi2Z += TMath::Abs(tracklets[iLayer].GetZfit(0) - z);
1885 0 : nLayers++;
1886 0 : }
1887 0 : chi2Z /= TMath::Max((nLayers - 3.0),1.0);
1888 0 : return chi2Z;
1889 : }
1890 :
1891 : //_____________________________________________________________________________
1892 : Int_t AliTRDtrackerV1::PropagateToX(AliTRDtrackV1 &t, Double_t xToGo, Double_t maxStep)
1893 : {
1894 : //
1895 : // Starting from current X-position of track <t> this function
1896 : // extrapolates the track up to radial position <xToGo> in steps of <maxStep>.
1897 : // Returns 1 if track reaches the plane, and 0 otherwise
1898 : //
1899 :
1900 : // Current track X-position
1901 2680 : Double_t xpos = t.GetX()/*,
1902 : mass = t.GetMass()*/;
1903 :
1904 : // Direction: inward or outward
1905 1340 : Double_t dir = (xpos < xToGo) ? 1.0 : -1.0;
1906 :
1907 12610 : while (((xToGo - xpos) * dir) > AliTRDReconstructor::GetEpsilon()) {
1908 : // printf("to go %f\n", (xToGo - xpos) * dir);
1909 9959 : Double_t xyz0[3];
1910 9959 : Double_t xyz1[3];
1911 9959 : Double_t param[7];
1912 : Double_t x;
1913 9959 : Double_t y;
1914 9959 : Double_t z;
1915 :
1916 : // The next step size
1917 9959 : Double_t step = dir * TMath::Min(TMath::Abs(xToGo-xpos),maxStep);
1918 :
1919 : // Get the global position of the starting point
1920 9959 : t.GetXYZ(xyz0);
1921 :
1922 : // X-position after next step
1923 9959 : x = xpos + step;
1924 :
1925 : // Get local Y and Z at the X-position of the next step
1926 9985 : if(t.GetProlongation(x,y,z)<0) return 0; // No prolongation possible
1927 :
1928 : // The global position of the end point of this prolongation step
1929 9933 : xyz1[0] = x * TMath::Cos(t.GetAlpha()) - y * TMath::Sin(t.GetAlpha());
1930 9933 : xyz1[1] = +x * TMath::Sin(t.GetAlpha()) + y * TMath::Cos(t.GetAlpha());
1931 9933 : xyz1[2] = z;
1932 :
1933 : // Calculate the mean material budget between start and
1934 : // end point of this prolongation step
1935 9933 : if(AliTracker::MeanMaterialBudget(xyz0, xyz1, param)<=0.) return 0;
1936 :
1937 : // Propagate the track to the X-position after the next step
1938 9936 : if (!t.PropagateTo(x, param[1], param[0]*param[4])) return 0;
1939 :
1940 : /* // Correct for mean material budget
1941 : Double_t dEdx(0.),
1942 : bg(TMath::Abs(t.GetP()/mass));
1943 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>=3){
1944 : const char *pn[] = {"rho", "x/X0", "<A>", "<Z>", "L", "<Z/A>", "Nb"};
1945 : printf("D-AliTRDtrackerV1::PropagateTo(): x[%6.2f] bg[%6.2f]\n", xpos, bg);
1946 : printf(" param :: %s[%e] %s[%e] %s[%e] %s[%e] %s[%e] %s[%e] %s[%e]\n"
1947 : , pn[0], param[0]
1948 : , pn[1], param[1]
1949 : , pn[2], param[2]
1950 : , pn[3], param[3]
1951 : , pn[4], param[4]
1952 : , pn[5], param[5]
1953 : , pn[6], param[6]);
1954 : }
1955 : switch(fgBB){
1956 : case kSolid:
1957 : dEdx = AliExternalTrackParam::BetheBlochSolid(bg);
1958 : break;
1959 : case kGas:
1960 : dEdx = AliExternalTrackParam::BetheBlochGas(bg);
1961 : break;
1962 : case kGeant:
1963 : { // mean exitation energy (GeV)
1964 : Double_t mee = ((param[3] < 13.) ? (12. * param[3] + 7.) : (9.76 * param[3] + 58.8 * TMath::Power(param[3],-0.19))) * 1.e-9;
1965 : Double_t mZA = param[5]>1.e-5?param[5]:(param[3]/param[2]);
1966 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>=3) printf("D-AliTRDtrackerV1::PropagateTo(): Mee[%e] <Z/A>[%e]\n", mee, mZA);
1967 : // protect against failed calculation of rho in MeanMaterialBudget()
1968 : dEdx = AliExternalTrackParam::BetheBlochGeant(bg, param[0]>1.e-6?param[0]:2.33, 0.2, 3., mee, mZA);
1969 : }
1970 : break;
1971 : }
1972 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")>=2) printf("D-AliTRDtrackerV1::PropagateTo(): dEdx(bg=%e, m=%e)= %e[GeV/cm]\n", bg, mass, dEdx);
1973 : if (!t.CorrectForMeanMaterialdEdx(param[1], dir*param[0]*param[4], mass, dEdx)) return 0;
1974 : */
1975 : // Rotate the track if necessary
1976 9930 : if(!AdjustSector(&t)) return 0;
1977 :
1978 : // New track X-position
1979 9930 : xpos = t.GetX();
1980 :
1981 19889 : }
1982 :
1983 1311 : return 1;
1984 :
1985 1340 : }
1986 :
1987 : //_____________________________________________________________________________
1988 : Bool_t AliTRDtrackerV1::ReadClusters(TTree *clusterTree)
1989 : {
1990 : //
1991 : // Reads AliTRDclusters from the file.
1992 : // The names of the cluster tree and branches
1993 : // should match the ones used in AliTRDclusterizer::WriteClusters()
1994 : //
1995 :
1996 16 : Int_t nsize = Int_t(clusterTree->GetTotBytes() / (sizeof(AliTRDcluster)));
1997 : static TObjArray* clusterArray=0;// = new TObjArray(nsize+1000);
1998 :
1999 8 : TBranch *branch = clusterTree->GetBranch("TRDcluster");
2000 8 : if (!branch) {
2001 0 : AliError("Can't get the branch !");
2002 0 : return kFALSE;
2003 : }
2004 8 : branch->SetAddress(&clusterArray);
2005 :
2006 8 : if(!fClusters){
2007 0 : Float_t nclusters = fkRecoParam->GetNClusters();
2008 0 : if(fkReconstructor->IsHLT()) nclusters /= AliTRDgeometry::kNsector;
2009 0 : fClusters = new TClonesArray("AliTRDcluster", Int_t(nclusters));
2010 0 : fClusters->SetOwner(kTRUE);
2011 0 : SetClustersOwner();
2012 0 : AliInfo(Form("Tracker owning clusters @ %p", (void*)fClusters));
2013 0 : }
2014 :
2015 : // Loop through all entries in the tree
2016 8 : Int_t nEntries = (Int_t) clusterTree->GetEntries();
2017 : Int_t nbytes = 0;
2018 : Int_t ncl = 0;
2019 : AliTRDcluster *c = NULL;
2020 714 : for (Int_t iEntry = 0; iEntry < nEntries; iEntry++) {
2021 : // Import the tree
2022 349 : nbytes += clusterTree->GetEvent(iEntry);
2023 :
2024 : // Get the number of points in the detector
2025 349 : Int_t nCluster = clusterArray->GetEntriesFast();
2026 37602 : for (Int_t iCluster = 0; iCluster < nCluster; iCluster++) {
2027 18452 : if(!(c = (AliTRDcluster *) clusterArray->UncheckedAt(iCluster))) continue;
2028 18452 : new((*fClusters)[ncl++]) AliTRDcluster(*c);
2029 36904 : delete (clusterArray->RemoveAt(iCluster));
2030 : }
2031 : }
2032 : // delete clusterArray;
2033 8 : clusterArray->Delete(); //RS normally should not contain clusters anymore
2034 :
2035 : return kTRUE;
2036 8 : }
2037 :
2038 : //_____________________________________________________________________________
2039 : Int_t AliTRDtrackerV1::LoadClusters(TTree *cTree)
2040 : {
2041 : //
2042 : // Fills clusters into TRD tracking sectors
2043 : //
2044 :
2045 16 : fkRecoParam = fkReconstructor->GetRecoParam(); // load reco param for this event
2046 :
2047 : // if(!fkReconstructor->IsWritingClusters()) AliInfo(Form("IsWritingClusters[%c]", fkReconstructor->IsWritingClusters()?'y':'n'));
2048 8 : if(!(fClusters = AliTRDReconstructor::GetClusters())){
2049 0 : AliWarning("Clusters unavailable from TRD reconstructor. Trying reading from tree ...");
2050 0 : } else {
2051 8 : if(!ReadClusters(cTree)) {
2052 0 : AliError("Reading clusters from tree failed.");
2053 0 : return 1;
2054 : }
2055 : }
2056 :
2057 16 : if(!fClusters || !fClusters->GetEntriesFast()){
2058 0 : AliInfo("No TRD clusters");
2059 0 : return 1;
2060 56 : } else AliInfo(Form("Using :: clusters[%d] onl.tracklets[%d] onl.tracks[%d]",
2061 : fClusters?fClusters->GetEntriesFast():0,
2062 : AliTRDReconstructor::GetTracklets()?AliTRDReconstructor::GetTracklets()->GetEntriesFast():0,
2063 : AliTRDReconstructor::GetTracks()?AliTRDReconstructor::GetTracks()->GetEntriesFast():0));
2064 :
2065 8 : BuildTrackingContainers();
2066 :
2067 8 : return 0;
2068 8 : }
2069 :
2070 : //_____________________________________________________________________________
2071 : Int_t AliTRDtrackerV1::LoadClusters(TClonesArray * const clusters)
2072 : {
2073 : //
2074 : // Fills clusters into TRD tracking sectors
2075 : // Function for use in the HLT
2076 :
2077 0 : if(!clusters || !clusters->GetEntriesFast()){
2078 0 : AliInfo("No TRD clusters");
2079 0 : return 1;
2080 0 : } else AliInfo(Form("Using :: external.clusters[%d]", clusters->GetEntriesFast()));
2081 :
2082 :
2083 0 : fClusters = clusters;
2084 :
2085 0 : fkRecoParam = fkReconstructor->GetRecoParam(); // load reco param for this event
2086 0 : BuildTrackingContainers();
2087 :
2088 0 : return 0;
2089 0 : }
2090 :
2091 :
2092 : //____________________________________________________________________
2093 : Int_t AliTRDtrackerV1::BuildTrackingContainers()
2094 : {
2095 : // Building tracking containers for clusters
2096 :
2097 16 : Int_t nin(0), ncl(fClusters->GetEntriesFast());
2098 36920 : while (ncl--) {
2099 18452 : AliTRDcluster *c = (AliTRDcluster *) fClusters->UncheckedAt(ncl);
2100 35343 : if(c->IsInChamber()) nin++;
2101 18452 : if(fkReconstructor->IsHLT()) c->SetRPhiMethod(AliTRDcluster::kCOG);
2102 18452 : Int_t detector = c->GetDetector();
2103 18452 : Int_t sector = fGeom->GetSector(detector);
2104 18452 : Int_t stack = fGeom->GetStack(detector);
2105 18452 : Int_t layer = fGeom->GetLayer(detector);
2106 :
2107 18452 : fTrSec[sector].GetChamber(stack, layer, kTRUE)->InsertCluster(c, ncl);
2108 : }
2109 :
2110 304 : for(int isector =0; isector<AliTRDgeometry::kNsector; isector++){
2111 144 : if(!fTrSec[isector].GetNChambers()) continue;
2112 42 : fTrSec[isector].Init(fkReconstructor);
2113 42 : }
2114 :
2115 8 : return nin;
2116 : }
2117 :
2118 :
2119 :
2120 : //____________________________________________________________________
2121 : void AliTRDtrackerV1::UnloadClusters()
2122 : {
2123 : //
2124 : // Clears the arrays of clusters and tracks. Resets sectors and timebins
2125 : // If option "force" is also set the containers are also deleted. This is useful
2126 : // in case of HLT
2127 :
2128 16 : if(fTracks){
2129 0 : fTracks->Delete();
2130 0 : if(HasRemoveContainers()){delete fTracks; fTracks = NULL;}
2131 : }
2132 8 : if(fTracklets){
2133 8 : fTracklets->Delete();
2134 8 : if(HasRemoveContainers()){delete fTracklets; fTracklets = NULL;}
2135 : }
2136 16 : if(fClusters && IsClustersOwner()){
2137 0 : AliInfo(Form("tracker[%p] clearing %d own clusters @ %p", (void*)this, fClusters->GetEntries(), (void*)fClusters));
2138 0 : fClusters->Delete();
2139 : //
2140 : // // save clusters array in the reconstructor for further use.
2141 : // if(!fkReconstructor->IsWritingClusters()){
2142 : // AliTRDReconstructor::SetClusters(fClusters);
2143 : // SetClustersOwner(kFALSE);
2144 : // } else AliTRDReconstructor::SetClusters(NULL);
2145 0 : }
2146 :
2147 304 : for (int i = 0; i < AliTRDgeometry::kNsector; i++) fTrSec[i].Clear();
2148 :
2149 : // Increment the Event Number
2150 8 : AliTRDtrackerDebug::SetEventNumber(AliTRDtrackerDebug::GetEventNumber() + 1);
2151 8 : }
2152 :
2153 : // //____________________________________________________________________
2154 : // void AliTRDtrackerV1::UseClusters(const AliKalmanTrack *t, Int_t) const
2155 : // {
2156 : // const AliTRDtrackV1 *track = dynamic_cast<const AliTRDtrackV1*>(t);
2157 : // if(!track) return;
2158 : //
2159 : // AliTRDseedV1 *tracklet = NULL;
2160 : // for(Int_t ily=AliTRDgeometry::kNlayer; ily--;){
2161 : // if(!(tracklet = track->GetTracklet(ily))) continue;
2162 : // AliTRDcluster *c = NULL;
2163 : // for(Int_t ic=AliTRDseed::kNclusters; ic--;){
2164 : // if(!(c=tracklet->GetClusters(ic))) continue;
2165 : // c->Use();
2166 : // }
2167 : // }
2168 : // }
2169 : //
2170 :
2171 : //_____________________________________________________________________________
2172 : Bool_t AliTRDtrackerV1::AdjustSector(AliTRDtrackV1 *const track)
2173 : {
2174 : //
2175 : // Rotates the track when necessary
2176 : //
2177 :
2178 22810 : Double_t alpha = AliTRDgeometry::GetAlpha();
2179 11405 : Double_t y = track->GetY();
2180 11405 : Double_t ymax = track->GetX()*TMath::Tan(0.5*alpha);
2181 :
2182 11405 : if (y > ymax) {
2183 20 : if (!track->Rotate( alpha)) {
2184 0 : return kFALSE;
2185 : }
2186 : }
2187 11385 : else if (y < -ymax) {
2188 26 : if (!track->Rotate(-alpha)) {
2189 0 : return kFALSE;
2190 : }
2191 : }
2192 :
2193 11405 : return kTRUE;
2194 :
2195 11405 : }
2196 :
2197 :
2198 : //____________________________________________________________________
2199 : AliTRDseedV1* AliTRDtrackerV1::GetTracklet(const AliTRDtrackV1 *const track, Int_t p, Int_t &idx)
2200 : {
2201 : // Find tracklet for TRD track <track>
2202 : // Parameters
2203 : // - track
2204 : // - sector
2205 : // - plane
2206 : // - index
2207 : // Output
2208 : // tracklet
2209 : // index
2210 : // Detailed description
2211 : //
2212 504 : idx = track->GetTrackletIndex(p);
2213 710 : AliTRDseedV1 *tracklet = (idx<0) ? NULL : (AliTRDseedV1*)fTracklets->UncheckedAt(idx);
2214 :
2215 252 : return tracklet;
2216 : }
2217 :
2218 : //____________________________________________________________________
2219 : AliTRDseedV1* AliTRDtrackerV1::SetTracklet(const AliTRDseedV1 * const tracklet)
2220 : {
2221 : // Add this tracklet to the list of tracklets stored in the tracker
2222 : //
2223 : // Parameters
2224 : // - tracklet : pointer to the tracklet to be added to the list
2225 : //
2226 : // Output
2227 : // - the index of the new tracklet in the tracker tracklets list
2228 : //
2229 : // Detailed description
2230 : // Build the tracklets list if it is not yet created (late initialization)
2231 : // and adds the new tracklet to the list.
2232 : //
2233 412 : if(!fTracklets){
2234 4 : fTracklets = new TClonesArray("AliTRDseedV1", AliTRDgeometry::Nsector()*kMaxTracksStack);
2235 2 : fTracklets->SetOwner(kTRUE);
2236 2 : }
2237 206 : Int_t nentries = fTracklets->GetEntriesFast();
2238 412 : return new ((*fTracklets)[nentries]) AliTRDseedV1(*tracklet);
2239 0 : }
2240 :
2241 : //____________________________________________________________________
2242 : AliTRDtrackV1* AliTRDtrackerV1::SetTrack(const AliTRDtrackV1 * const track)
2243 : {
2244 : // Add this track to the list of tracks stored in the tracker
2245 : //
2246 : // Parameters
2247 : // - track : pointer to the track to be added to the list
2248 : //
2249 : // Output
2250 : // - the pointer added
2251 : //
2252 : // Detailed description
2253 : // Build the tracks list if it is not yet created (late initialization)
2254 : // and adds the new track to the list.
2255 : //
2256 0 : if(!fTracks){
2257 0 : fTracks = new TClonesArray("AliTRDtrackV1", AliTRDgeometry::Nsector()*kMaxTracksStack);
2258 0 : fTracks->SetOwner(kTRUE);
2259 0 : }
2260 0 : Int_t nentries = fTracks->GetEntriesFast();
2261 0 : return new ((*fTracks)[nentries]) AliTRDtrackV1(*track);
2262 0 : }
2263 :
2264 :
2265 :
2266 : //____________________________________________________________________
2267 : Int_t AliTRDtrackerV1::Clusters2TracksSM(Int_t sector, AliESDEvent *esd)
2268 : {
2269 : //
2270 : // Steer tracking for one SM.
2271 : //
2272 : // Parameters :
2273 : // sector : Array of (SM) propagation layers containing clusters
2274 : // esd : The current ESD event. On output it contains the also
2275 : // the ESD (TRD) tracks found in this SM.
2276 : //
2277 : // Output :
2278 : // Number of tracks found in this TRD supermodule.
2279 : //
2280 : // Detailed description
2281 : //
2282 : // 1. Unpack AliTRDpropagationLayers objects for each stack.
2283 : // 2. Launch stack tracking.
2284 : // See AliTRDtrackerV1::Clusters2TracksStack() for details.
2285 : // 3. Pack results in the ESD event.
2286 : //
2287 :
2288 : Int_t nTracks = 0;
2289 : Int_t nChambers = 0;
2290 : AliTRDtrackingChamber **stack = NULL, *chamber = NULL;
2291 0 : for(int istack = 0; istack<AliTRDgeometry::kNstack; istack++){
2292 0 : if(!(stack = fTrSec[sector].GetStack(istack))) continue;
2293 : nChambers = 0;
2294 0 : for(int ilayer=0; ilayer<AliTRDgeometry::kNlayer; ilayer++){
2295 0 : if(!(chamber = stack[ilayer])) continue;
2296 0 : if(chamber->GetNClusters() < fgNTimeBins * fkRecoParam->GetFindableClusters()) continue;
2297 0 : nChambers++;
2298 : //AliInfo(Form("sector %d stack %d layer %d clusters %d", sector, istack, ilayer, chamber->GetNClusters()));
2299 0 : }
2300 0 : if(nChambers < 4) continue;
2301 : //AliInfo(Form("Doing stack %d", istack));
2302 0 : nTracks += Clusters2TracksStack(stack, fTracksESD);
2303 0 : }
2304 0 : if(nTracks) AliDebug(2, Form("Number of tracks: SM_%02d[%d]", sector, nTracks));
2305 :
2306 0 : for(int itrack=0; itrack<nTracks; itrack++){
2307 0 : AliESDtrack *esdTrack((AliESDtrack*)(fTracksESD->operator[](itrack)));
2308 0 : Int_t id = esd->AddTrack(esdTrack);
2309 :
2310 : // set ESD id to stand alone TRD tracks
2311 0 : if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ){
2312 0 : esdTrack=esd->GetTrack(id);
2313 : TObject *o(NULL); Int_t ic(0);
2314 : AliTRDtrackV1 *calibTrack(NULL);
2315 0 : while((o = esdTrack->GetCalibObject(ic++))){
2316 0 : if(!(calibTrack = dynamic_cast<AliTRDtrackV1*>(o))) continue;
2317 0 : calibTrack->SetESDid(esdTrack->GetID());
2318 0 : break;
2319 : }
2320 0 : }
2321 : }
2322 :
2323 : // Reset Track and Candidate Number
2324 0 : AliTRDtrackerDebug::SetCandidateNumber(0);
2325 0 : AliTRDtrackerDebug::SetTrackNumber(0);
2326 :
2327 : // delete ESD tracks in the array
2328 0 : fTracksESD->Delete();
2329 0 : return nTracks;
2330 : }
2331 :
2332 : //____________________________________________________________________
2333 : Int_t AliTRDtrackerV1::Clusters2TracksStack(AliTRDtrackingChamber **stack, TClonesArray * const esdTrackList)
2334 : {
2335 : //
2336 : // Make tracks in one TRD stack.
2337 : //
2338 : // Parameters :
2339 : // layer : Array of stack propagation layers containing clusters
2340 : // esdTrackList : Array of ESD tracks found by the stand alone tracker.
2341 : // On exit the tracks found in this stack are appended.
2342 : //
2343 : // Output :
2344 : // Number of tracks found in this stack.
2345 : //
2346 : // Detailed description
2347 : //
2348 : // 1. Find the 3 most useful seeding chambers. See BuildSeedingConfigs() for details.
2349 : // 2. Steer AliTRDtrackerV1::MakeSeeds() for 3 seeding layer configurations.
2350 : // See AliTRDtrackerV1::MakeSeeds() for more details.
2351 : // 3. Arrange track candidates in decreasing order of their quality
2352 : // 4. Classify tracks in 5 categories according to:
2353 : // a) number of layers crossed
2354 : // b) track quality
2355 : // 5. Sign clusters by tracks in decreasing order of track quality
2356 : // 6. Build AliTRDtrack out of seeding tracklets
2357 : // 7. Cook MC label
2358 : // 8. Build ESD track and register it to the output list
2359 : //
2360 :
2361 : AliTRDtrackingChamber *chamber = NULL;
2362 : AliTRDtrackingChamber **ci = NULL;
2363 0 : AliTRDseedV1 sseed[kMaxTracksStack*6]; // to be initialized
2364 0 : Int_t pars[4]; // MakeSeeds parameters
2365 :
2366 : //Double_t alpha = AliTRDgeometry::GetAlpha();
2367 : //Double_t shift = .5 * alpha;
2368 0 : Int_t configs[kNConfigs];
2369 :
2370 : // Purge used clusters from the containers
2371 : ci = &stack[0];
2372 0 : for(Int_t ic = kNPlanes; ic--; ci++){
2373 0 : if(!(*ci)) continue;
2374 0 : (*ci)->Update();
2375 : }
2376 :
2377 : // Build initial seeding configurations
2378 0 : Double_t quality = BuildSeedingConfigs(stack, configs);
2379 0 : if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 10 || AliTRDReconstructor::GetStreamLevel()>10){
2380 0 : AliInfo(Form("Plane config %d %d %d Quality %f"
2381 : , configs[0], configs[1], configs[2], quality));
2382 : }
2383 :
2384 :
2385 : // Initialize contors
2386 : Int_t ntracks, // number of TRD track candidates
2387 : ntracks1, // number of registered TRD tracks/iter
2388 : ntracks2 = 0; // number of all registered TRD tracks in stack
2389 0 : fSieveSeeding = 0;
2390 :
2391 : // Get stack index
2392 : Int_t ic = 0; ci = &stack[0];
2393 0 : while(ic<kNPlanes && !(*ci)){ic++; ci++;}
2394 0 : if(!(*ci)) return ntracks2;
2395 0 : Int_t istack = fGeom->GetStack((*ci)->GetDetector());
2396 :
2397 0 : do{
2398 : // Loop over seeding configurations
2399 : ntracks = 0; ntracks1 = 0;
2400 0 : for (Int_t iconf = 0; iconf<fkRecoParam->GetNumberOfSeedConfigs(); iconf++) {
2401 0 : pars[0] = configs[iconf];
2402 0 : pars[1] = ntracks;
2403 0 : pars[2] = istack;
2404 0 : ntracks = MakeSeeds(stack, &sseed[6*ntracks], pars);
2405 : //AliInfo(Form("Number of Tracks after iteration step %d: %d\n", iconf, ntracks));
2406 0 : if(ntracks == kMaxTracksStack) break;
2407 : }
2408 0 : AliDebug(2, Form("Candidate TRD tracks %d in iteration %d.", ntracks, fSieveSeeding));
2409 0 : if(!ntracks) break;
2410 :
2411 : // Sort the seeds according to their quality
2412 0 : Int_t sort[kMaxTracksStack+1];
2413 0 : TMath::Sort(ntracks, fTrackQuality, sort, kTRUE);
2414 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1") > 2){
2415 0 : AliDebug(3, "Track candidates classification:");
2416 0 : for (Int_t it(0); it < ntracks; it++) {
2417 0 : Int_t jt(sort[it]);
2418 0 : printf(" %2d idx[%d] Quality[%e]\n", it, jt, fTrackQuality[jt]);
2419 : }
2420 0 : }
2421 :
2422 : // Initialize number of tracks so far and logic switches
2423 0 : Int_t ntracks0 = esdTrackList->GetEntriesFast();
2424 0 : Bool_t signedTrack[kMaxTracksStack];
2425 0 : Bool_t fakeTrack[kMaxTracksStack];
2426 0 : for (Int_t i=0; i<ntracks; i++){
2427 0 : signedTrack[i] = kFALSE;
2428 0 : fakeTrack[i] = kFALSE;
2429 : }
2430 : //AliInfo("Selecting track candidates ...");
2431 :
2432 : // Sieve clusters in decreasing order of track quality
2433 : Int_t jSieve(0), rejectedCandidates(0);
2434 0 : do{
2435 : // Check track candidates
2436 : rejectedCandidates=0;
2437 0 : for (Int_t itrack = 0; itrack < ntracks; itrack++) {
2438 0 : Int_t trackIndex = sort[itrack];
2439 0 : if (signedTrack[trackIndex] || fakeTrack[trackIndex]) continue;
2440 :
2441 : // Calculate track parameters from tracklets seeds
2442 0 : Int_t ncl = 0;
2443 0 : Int_t nused = 0;
2444 0 : Int_t nlayers = 0;
2445 0 : Int_t findable = 0;
2446 0 : for (Int_t jLayer = 0; jLayer < kNPlanes; jLayer++) {
2447 0 : Int_t jseed = kNPlanes*trackIndex+jLayer;
2448 0 : sseed[jseed].UpdateUsed();
2449 0 : if(!sseed[jseed].IsOK()) continue;
2450 : // check if primary candidate
2451 0 : if (TMath::Abs(sseed[jseed].GetYref(0) / sseed[jseed].GetX0()) < 0.158) findable++;
2452 0 : ncl += sseed[jseed].GetN();
2453 0 : nused += sseed[jseed].GetNUsed();
2454 0 : nlayers++;
2455 0 : }
2456 :
2457 : // Filter duplicated tracks
2458 0 : if (nused > 30){
2459 0 : AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused));
2460 0 : fakeTrack[trackIndex] = kTRUE;
2461 0 : continue;
2462 : }
2463 0 : if (ncl>0 && Float_t(nused)/ncl >= .25){
2464 0 : AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d] used/ncl[%f]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused, Float_t(nused)/ncl));
2465 0 : fakeTrack[trackIndex] = kTRUE;
2466 0 : continue;
2467 : }
2468 :
2469 0 : AliDebug(4, Form("Candidate[%d] Quality[%e] Tracklets[%d] Findable[%d] Ncl[%d] Nused[%d]", trackIndex, fTrackQuality[trackIndex], nlayers, findable, ncl, nused));
2470 :
2471 : // Classify tracks
2472 : Bool_t skip = kFALSE;
2473 0 : switch(jSieve){
2474 : case 0: // select 6 tracklets primary tracks, good quality
2475 0 : if(nlayers > findable || nlayers < kNPlanes) {skip = kTRUE; break;}
2476 0 : if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
2477 : break;
2478 :
2479 : case 1: // select shorter primary tracks, good quality
2480 : //if(findable<4){skip = kTRUE; break;}
2481 0 : if(nlayers < findable){skip = kTRUE; break;}
2482 0 : if(TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -4.){skip = kTRUE; break;}
2483 : break;
2484 :
2485 : case 2: // select 6 tracklets secondary tracks
2486 0 : if(nlayers < kNPlanes) { skip = kTRUE; break;}
2487 0 : if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -6.0){skip = kTRUE; break;}
2488 : break;
2489 :
2490 : case 3: // select shorter tracks, good quality
2491 0 : if (nlayers<4){skip = kTRUE; break;}
2492 0 : if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) < -5.){skip = kTRUE; break;}
2493 : break;
2494 :
2495 : case 4: // select anything with at least 4 tracklets
2496 0 : if (nlayers<4){skip = kTRUE; break;}
2497 : //if (TMath::Log(1.E-9+fTrackQuality[trackIndex]) - nused/(nlayers-3.0) < -15.0){skip = kTRUE; break;}
2498 : break;
2499 : }
2500 0 : if(skip){
2501 0 : rejectedCandidates++;
2502 0 : AliDebug(4, Form("REJECTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused));
2503 0 : continue;
2504 0 : } else AliDebug(4, Form("ACCEPTED : %d idx[%d] quality[%e] tracklets[%d] usedClusters[%d]", itrack, trackIndex, fTrackQuality[trackIndex], nlayers, nused));
2505 :
2506 0 : signedTrack[trackIndex] = kTRUE;
2507 :
2508 0 : AliTRDseedV1 *lseed =&sseed[trackIndex*kNPlanes];
2509 0 : AliTRDtrackV1 *track = MakeTrack(lseed);
2510 0 : if(!track){
2511 0 : AliDebug(1, "Track building failed.");
2512 0 : continue;
2513 : } else {
2514 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1") > 1){
2515 0 : Int_t ich = 0; while(!(chamber = stack[ich])) ich++;
2516 0 : AliDebug(2, Form("Track pt=%7.2fGeV/c SM[%2d] Done.", track->Pt(), fGeom->GetSector(chamber->GetDetector())));
2517 0 : }
2518 : }
2519 :
2520 0 : if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()){
2521 : //AliInfo(Form("Track %d [%d] nlayers %d trackQuality = %e nused %d, yref = %3.3f", itrack, trackIndex, nlayers, fTrackQuality[trackIndex], nused, trackParams[1]));
2522 :
2523 0 : AliTRDseedV1 *dseed[6];
2524 0 : for(Int_t iseed = AliTRDgeometry::kNlayer; iseed--;) dseed[iseed] = new AliTRDseedV1(lseed[iseed]);
2525 :
2526 : //Int_t eventNrInFile = esd->GetEventNumberInFile();
2527 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2528 0 : Int_t trackNumber = AliTRDtrackerDebug::GetTrackNumber();
2529 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2530 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2531 0 : cstreamer << "Clusters2TracksStack"
2532 0 : << "EventNumber=" << eventNumber
2533 0 : << "TrackNumber=" << trackNumber
2534 0 : << "CandidateNumber=" << candidateNumber
2535 0 : << "Iter=" << fSieveSeeding
2536 0 : << "Like=" << fTrackQuality[trackIndex]
2537 0 : << "S0.=" << dseed[0]
2538 0 : << "S1.=" << dseed[1]
2539 0 : << "S2.=" << dseed[2]
2540 0 : << "S3.=" << dseed[3]
2541 0 : << "S4.=" << dseed[4]
2542 0 : << "S5.=" << dseed[5]
2543 0 : << "Ncl=" << ncl
2544 0 : << "NLayers=" << nlayers
2545 0 : << "Findable=" << findable
2546 0 : << "NUsed=" << nused
2547 0 : << "\n";
2548 0 : }
2549 :
2550 :
2551 0 : AliESDtrack *esdTrack = new ((*esdTrackList)[ntracks0++]) AliESDtrack();
2552 0 : esdTrack->UpdateTrackParams(track, AliESDtrack::kTRDout);
2553 0 : esdTrack->SetLabel(track->GetLabel());
2554 0 : track->UpdateESDtrack(esdTrack);
2555 : // write ESD-friends if neccessary
2556 0 : if (fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 0 || AliTRDReconstructor::GetStreamLevel()>0 ){
2557 0 : AliTRDtrackV1 *calibTrack = new AliTRDtrackV1(*track);
2558 0 : calibTrack->SetOwner();
2559 0 : esdTrack->AddCalibObject(calibTrack);
2560 0 : }
2561 0 : ntracks1++;
2562 0 : AliTRDtrackerDebug::SetTrackNumber(AliTRDtrackerDebug::GetTrackNumber() + 1);
2563 0 : }
2564 :
2565 0 : jSieve++;
2566 0 : } while(jSieve<5 && rejectedCandidates); // end track candidates sieve
2567 0 : if(!ntracks1) break;
2568 :
2569 : // increment counters
2570 0 : ntracks2 += ntracks1;
2571 :
2572 0 : if(fkReconstructor->IsHLT()) break;
2573 0 : fSieveSeeding++;
2574 :
2575 : // Rebuild plane configurations and indices taking only unused clusters into account
2576 0 : quality = BuildSeedingConfigs(stack, configs);
2577 0 : if(quality < 1.E-7) break; //fkReconstructor->GetRecoParam() ->GetPlaneQualityThreshold()) break;
2578 :
2579 0 : for(Int_t ip = 0; ip < kNPlanes; ip++){
2580 0 : if(!(chamber = stack[ip])) continue;
2581 0 : chamber->Build(fGeom);//Indices(fSieveSeeding);
2582 : }
2583 :
2584 0 : if(fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 10 || AliTRDReconstructor::GetStreamLevel()>10){
2585 0 : AliInfo(Form("Sieve level %d Plane config %d %d %d Quality %f", fSieveSeeding, configs[0], configs[1], configs[2], quality));
2586 : }
2587 0 : } while(fSieveSeeding<10); // end stack clusters sieve
2588 :
2589 :
2590 :
2591 : //AliInfo(Form("Registered TRD tracks %d in stack %d.", ntracks2, pars[1]));
2592 :
2593 : return ntracks2;
2594 0 : }
2595 :
2596 : //___________________________________________________________________
2597 : Double_t AliTRDtrackerV1::BuildSeedingConfigs(AliTRDtrackingChamber **stack, Int_t *configs)
2598 : {
2599 : //
2600 : // Assign probabilities to chambers according to their
2601 : // capability of producing seeds.
2602 : //
2603 : // Parameters :
2604 : //
2605 : // layers : Array of stack propagation layers for all 6 chambers in one stack
2606 : // configs : On exit array of configuration indexes (see GetSeedingConfig()
2607 : // for details) in the decreasing order of their seeding probabilities.
2608 : //
2609 : // Output :
2610 : //
2611 : // Return top configuration quality
2612 : //
2613 : // Detailed description:
2614 : //
2615 : // To each chamber seeding configuration (see GetSeedingConfig() for
2616 : // the list of all configurations) one defines 2 quality factors:
2617 : // - an apriori topological quality (see GetSeedingConfig() for details) and
2618 : // - a data quality based on the uniformity of the distribution of
2619 : // clusters over the x range (time bins population). See CookChamberQA() for details.
2620 : // The overall chamber quality is given by the product of this 2 contributions.
2621 : //
2622 :
2623 0 : Double_t chamberQ[kNPlanes];memset(chamberQ, 0, kNPlanes*sizeof(Double_t));
2624 : AliTRDtrackingChamber *chamber = NULL;
2625 0 : for(int iplane=0; iplane<kNPlanes; iplane++){
2626 0 : if(!(chamber = stack[iplane])) continue;
2627 0 : chamberQ[iplane] = (chamber = stack[iplane]) ? chamber->GetQuality() : 0.;
2628 0 : }
2629 :
2630 0 : Double_t tconfig[kNConfigs];memset(tconfig, 0, kNConfigs*sizeof(Double_t));
2631 0 : Int_t planes[] = {0, 0, 0, 0};
2632 0 : for(int iconf=0; iconf<kNConfigs; iconf++){
2633 0 : GetSeedingConfig(iconf, planes);
2634 0 : tconfig[iconf] = fgTopologicQA[iconf];
2635 0 : for(int iplane=0; iplane<4; iplane++) tconfig[iconf] *= chamberQ[planes[iplane]];
2636 : }
2637 :
2638 0 : TMath::Sort((Int_t)kNConfigs, tconfig, configs, kTRUE);
2639 : // AliInfo(Form("q[%d] = %f", configs[0], tconfig[configs[0]]));
2640 : // AliInfo(Form("q[%d] = %f", configs[1], tconfig[configs[1]]));
2641 : // AliInfo(Form("q[%d] = %f", configs[2], tconfig[configs[2]]));
2642 :
2643 0 : return tconfig[configs[0]];
2644 0 : }
2645 :
2646 : //____________________________________________________________________
2647 : Int_t AliTRDtrackerV1::MakeSeeds(AliTRDtrackingChamber **stack, AliTRDseedV1 * const sseed, const Int_t * const ipar)
2648 : {
2649 : //
2650 : // Seed tracklets and build candidate TRD tracks. The procedure is used during barrel tracking to account for tracks which are
2651 : // either missed by TPC prolongation or conversions inside the TRD volume.
2652 : // For stand alone tracking the procedure is used to estimate all tracks measured by TRD.
2653 : //
2654 : // Parameters :
2655 : // layers : Array of stack propagation layers containing clusters
2656 : // sseed : Array of empty tracklet seeds. On exit they are filled.
2657 : // ipar : Control parameters:
2658 : // ipar[0] -> seeding chambers configuration
2659 : // ipar[1] -> stack index
2660 : // ipar[2] -> number of track candidates found so far
2661 : //
2662 : // Output :
2663 : // Number of tracks candidates found.
2664 : //
2665 : // The following steps are performed:
2666 : // 1. Build seeding layers by collapsing all time bins from each of the four seeding chambers along the
2667 : // radial coordinate. See AliTRDtrackingChamber::GetSeedingLayer() for details. The chambers selection for seeding
2668 : // is described in AliTRDtrackerV1::Clusters2TracksStack().
2669 : // 2. Using the seeding clusters from the seeding layer (step 1) build combinatorics using the following algorithm:
2670 : // - for each seeding cluster in the lower seeding layer find
2671 : // - all seeding clusters in the upper seeding layer inside a road defined by a given phi angle. The angle
2672 : // is calculated on the minimum pt of tracks from vertex accesible to the stand alone tracker.
2673 : // - for each pair of two extreme seeding clusters select middle upper cluster using roads defined externally by the
2674 : // reco params
2675 : // - select last seeding cluster as the nearest to the linear approximation of the track described by the first three
2676 : // seeding clusters.
2677 : // The implementation of road calculation and cluster selection can be found in the functions AliTRDchamberTimeBin::BuildCond()
2678 : // and AliTRDchamberTimeBin::GetClusters().
2679 : // 3. Helix fit of the seeding clusters set. (see AliTRDtrackerFitter::FitRieman(AliTRDcluster**)). No tilt correction is
2680 : // performed at this level
2681 : // 4. Initialize seeding tracklets in the seeding chambers.
2682 : // 5. *Filter 0* Chi2 cut on the Y and Z directions. The threshold is set externally by the reco params.
2683 : // 6. Attach (true) clusters to seeding tracklets (see AliTRDseedV1::AttachClusters()) and fit tracklet (see
2684 : // AliTRDseedV1::Fit()). The number of used clusters used by current seeds should not exceed ... (25).
2685 : // 7. *Filter 1* Check if all 4 seeding tracklets are correctly constructed.
2686 : // 8. Helix fit of the clusters from the seeding tracklets with tilt correction. Refit tracklets using the new
2687 : // approximation of the track.
2688 : // 9. *Filter 2* Calculate likelihood of the track. (See AliTRDtrackerV1::CookLikelihood()). The following quantities are
2689 : // checked against the Riemann fit:
2690 : // - position resolution in y
2691 : // - angular resolution in the bending plane
2692 : // - likelihood of the number of clusters attached to the tracklet
2693 : // 10. Extrapolation of the helix fit to the other 2 chambers *non seeding* chambers:
2694 : // - Initialization of extrapolation tracklets with the fit parameters
2695 : // - Attach clusters to extrapolated tracklets
2696 : // - Helix fit of tracklets
2697 : // 11. Improve seeding tracklets quality by reassigning clusters based on the last parameters of the track
2698 : // See AliTRDtrackerV1::ImproveSeedQuality() for details.
2699 : // 12. Helix fit of all 6 seeding tracklets and chi2 calculation
2700 : // 13. Hyperplane fit and track quality calculation. See AliTRDtrackerFitter::FitHyperplane() for details.
2701 : // 14. Cooking labels for tracklets. Should be done only for MC
2702 : // 15. Register seeds.
2703 : //
2704 : // Authors:
2705 : // Marian Ivanov <M.Ivanov@gsi.de>
2706 : // Alexandru Bercuci <A.Bercuci@gsi.de>
2707 : // Markus Fasel <M.Fasel@gsi.de>
2708 :
2709 : AliTRDtrackingChamber *chamber = NULL;
2710 0 : AliTRDcluster *c[kNSeedPlanes] = {NULL, NULL, NULL, NULL}; // initilize seeding clusters
2711 : AliTRDseedV1 *cseed = &sseed[0]; // initialize tracklets for first track
2712 0 : Int_t ncl, mcl; // working variable for looping over clusters
2713 0 : Int_t index[AliTRDchamberTimeBin::kMaxClustersLayer], jndex[AliTRDchamberTimeBin::kMaxClustersLayer];
2714 : // chi2 storage
2715 : // chi2[0] = tracklet chi2 on the Z direction
2716 : // chi2[1] = tracklet chi2 on the R direction
2717 0 : Double_t chi2[4];
2718 :
2719 : // this should be data member of AliTRDtrack TODO
2720 : // Double_t seedQuality[kMaxTracksStack];
2721 :
2722 : // unpack control parameters
2723 0 : Int_t config = ipar[0];
2724 0 : Int_t ntracks = ipar[1];
2725 0 : Int_t istack = ipar[2];
2726 0 : Int_t planes[kNSeedPlanes]; GetSeedingConfig(config, planes);
2727 0 : Int_t planesExt[kNPlanes-kNSeedPlanes]; GetExtrapolationConfig(config, planesExt);
2728 :
2729 :
2730 : // Init chambers geometry
2731 0 : Double_t hL[kNPlanes]; // Tilting angle
2732 0 : Float_t padlength[kNPlanes]; // pad lenghts
2733 0 : Float_t padwidth[kNPlanes]; // pad widths
2734 : AliTRDpadPlane *pp = NULL;
2735 0 : for(int iplane=0; iplane<kNPlanes; iplane++){
2736 0 : pp = fGeom->GetPadPlane(iplane, istack);
2737 0 : hL[iplane] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
2738 0 : padlength[iplane] = pp->GetLengthIPad();
2739 0 : padwidth[iplane] = pp->GetWidthIPad();
2740 : }
2741 :
2742 : // Init anode wire position for chambers
2743 0 : Double_t x0[kNPlanes], // anode wire position
2744 0 : driftLength = .5*AliTRDgeometry::AmThick() - AliTRDgeometry::DrThick(); // drift length
2745 : TGeoHMatrix *matrix = NULL;
2746 0 : Double_t loc[] = {AliTRDgeometry::AnodePos(), 0., 0.};
2747 0 : Double_t glb[] = {0., 0., 0.};
2748 : AliTRDtrackingChamber **cIter = &stack[0];
2749 0 : for(int iLayer=0; iLayer<kNPlanes; iLayer++,cIter++){
2750 0 : if(!(*cIter)) continue;
2751 0 : if(!(matrix = fGeom->GetClusterMatrix((*cIter)->GetDetector()))){
2752 0 : x0[iLayer] = fgkX0[iLayer];
2753 0 : continue;
2754 : }
2755 0 : matrix->LocalToMaster(loc, glb);
2756 0 : x0[iLayer] = glb[0];
2757 0 : }
2758 :
2759 0 : AliDebug(2, Form("Making seeds Stack[%d] Config[%d] Tracks[%d]...", istack, config, ntracks));
2760 :
2761 : // Build seeding layers
2762 0 : ResetSeedTB();
2763 : Int_t nlayers = 0;
2764 0 : for(int isl=0; isl<kNSeedPlanes; isl++){
2765 0 : if(!(chamber = stack[planes[isl]])) continue;
2766 0 : if(!chamber->GetSeedingLayer(fSeedTB[isl], fGeom, fkReconstructor)) continue;
2767 0 : nlayers++;
2768 0 : }
2769 0 : if(nlayers < kNSeedPlanes) return ntracks;
2770 :
2771 :
2772 : // Start finding seeds
2773 0 : Double_t cond0[4], cond1[4], cond2[4];
2774 : Int_t icl = 0;
2775 0 : while((c[3] = (*fSeedTB[3])[icl++])){
2776 0 : if(!c[3]) continue;
2777 0 : fSeedTB[0]->BuildCond(c[3], cond0, 0);
2778 0 : fSeedTB[0]->GetClusters(cond0, index, ncl);
2779 : //printf("Found c[3] candidates 0 %d\n", ncl);
2780 : Int_t jcl = 0;
2781 0 : while(jcl<ncl) {
2782 0 : c[0] = (*fSeedTB[0])[index[jcl++]];
2783 0 : if(!c[0]) continue;
2784 0 : Double_t dx = c[3]->GetX() - c[0]->GetX();
2785 0 : Double_t dzdx = (c[3]->GetZ() - c[0]->GetZ())/dx;
2786 0 : Double_t dydx = (c[3]->GetY() - c[0]->GetY())/dx;
2787 0 : fSeedTB[1]->BuildCond(c[0], cond1, 1, dzdx, dydx);
2788 0 : fSeedTB[1]->GetClusters(cond1, jndex, mcl);
2789 : //printf("Found c[0] candidates 1 %d\n", mcl);
2790 :
2791 : Int_t kcl = 0;
2792 0 : while(kcl<mcl) {
2793 0 : c[1] = (*fSeedTB[1])[jndex[kcl++]];
2794 0 : if(!c[1]) continue;
2795 0 : fSeedTB[2]->BuildCond(c[1], cond2, 2, dzdx, dydx);
2796 0 : c[2] = fSeedTB[2]->GetNearestCluster(cond2);
2797 : //printf("Found c[1] candidate 2 %p\n", c[2]);
2798 0 : if(!c[2]) continue;
2799 :
2800 0 : AliDebug(3, Form("Seeding clusters\n 0[%6.3f %6.3f %6.3f]\n 1[%6.3f %6.3f %6.3f]\n 2[%6.3f %6.3f %6.3f]\n 3[%6.3f %6.3f %6.3f].",
2801 : c[0]->GetX(), c[0]->GetY(), c[0]->GetZ(),
2802 : c[1]->GetX(), c[1]->GetY(), c[1]->GetZ(),
2803 : c[2]->GetX(), c[2]->GetY(), c[2]->GetZ(),
2804 : c[3]->GetX(), c[3]->GetY(), c[3]->GetZ()));
2805 :
2806 0 : for (Int_t il = 0; il < kNPlanes; il++) cseed[il].Reset();
2807 :
2808 0 : FitRieman(c, chi2);
2809 :
2810 : AliTRDseedV1 *tseed = &cseed[0];
2811 : cIter = &stack[0];
2812 0 : for(int iLayer=0; iLayer<kNPlanes; iLayer++, tseed++, cIter++){
2813 0 : Int_t det = (*cIter) ? (*cIter)->GetDetector() : -1;
2814 0 : tseed->SetDetector(det);
2815 0 : tseed->SetTilt(hL[iLayer]);
2816 0 : tseed->SetPadLength(padlength[iLayer]);
2817 0 : tseed->SetPadWidth(padwidth[iLayer]);
2818 0 : tseed->SetReconstructor(fkReconstructor);
2819 0 : tseed->SetX0(det<0 ? fR[iLayer]+driftLength : x0[iLayer]);
2820 0 : tseed->Init(GetRiemanFitter());
2821 0 : tseed->SetStandAlone(kTRUE);
2822 : }
2823 :
2824 0 : Bool_t isFake = kFALSE;
2825 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming())
2826 0 : ||AliTRDReconstructor::GetStreamLevel()>=2 ){
2827 0 : if (c[0]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2828 0 : if (c[1]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2829 0 : if (c[2]->GetLabel(0) != c[3]->GetLabel(0)) isFake = kTRUE;
2830 :
2831 0 : Double_t xpos[4];
2832 0 : for(Int_t l = 0; l < kNSeedPlanes; l++) xpos[l] = fSeedTB[l]->GetX();
2833 0 : Float_t yref[4];
2834 0 : for(int il=0; il<4; il++) yref[il] = cseed[planes[il]].GetYref(0);
2835 0 : Int_t ll = c[3]->GetLabel(0);
2836 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2837 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2838 0 : AliRieman *rim = GetRiemanFitter();
2839 0 : TTreeSRedirector &cs0 = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2840 0 : cs0 << "MakeSeeds0"
2841 0 : <<"EventNumber=" << eventNumber
2842 0 : <<"CandidateNumber=" << candidateNumber
2843 0 : <<"isFake=" << isFake
2844 0 : <<"config=" << config
2845 0 : <<"label=" << ll
2846 0 : <<"chi2z=" << chi2[0]
2847 0 : <<"chi2y=" << chi2[1]
2848 0 : <<"Y2exp=" << cond2[0]
2849 0 : <<"Z2exp=" << cond2[1]
2850 0 : <<"X0=" << xpos[0] //layer[sLayer]->GetX()
2851 0 : <<"X1=" << xpos[1] //layer[sLayer + 1]->GetX()
2852 0 : <<"X2=" << xpos[2] //layer[sLayer + 2]->GetX()
2853 0 : <<"X3=" << xpos[3] //layer[sLayer + 3]->GetX()
2854 0 : <<"yref0=" << yref[0]
2855 0 : <<"yref1=" << yref[1]
2856 0 : <<"yref2=" << yref[2]
2857 0 : <<"yref3=" << yref[3]
2858 0 : <<"c0.=" << c[0]
2859 0 : <<"c1.=" << c[1]
2860 0 : <<"c2.=" << c[2]
2861 0 : <<"c3.=" << c[3]
2862 0 : <<"Seed0.=" << &cseed[planes[0]]
2863 0 : <<"Seed1.=" << &cseed[planes[1]]
2864 0 : <<"Seed2.=" << &cseed[planes[2]]
2865 0 : <<"Seed3.=" << &cseed[planes[3]]
2866 0 : <<"RiemanFitter.=" << rim
2867 0 : <<"\n";
2868 0 : }
2869 0 : if(chi2[0] > fkRecoParam->GetChi2Z()/*7./(3. - sLayer)*//*iter*/){
2870 0 : AliDebug(3, Form("Filter on chi2Z [%f].", chi2[0]));
2871 0 : AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2872 0 : continue;
2873 : }
2874 0 : if(chi2[1] > fkRecoParam->GetChi2Y()/*1./(3. - sLayer)*//*iter*/){
2875 0 : AliDebug(3, Form("Filter on chi2Y [%f].", chi2[1]));
2876 0 : AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2877 0 : continue;
2878 : }
2879 : //AliInfo("Passed chi2 filter.");
2880 :
2881 : // try attaching clusters to tracklets
2882 0 : Int_t mlayers = 0;
2883 : AliTRDcluster *cl = NULL;
2884 0 : for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
2885 0 : Int_t jLayer = planes[iLayer];
2886 : Int_t nNotInChamber = 0;
2887 0 : if(!cseed[jLayer].AttachClusters(stack[jLayer], kTRUE)) continue;
2888 : if(/*fkReconstructor->IsHLT()*/kFALSE){
2889 : cseed[jLayer].UpdateUsed();
2890 : if(!cseed[jLayer].IsOK()) continue;
2891 : }else{
2892 0 : cseed[jLayer].Fit();
2893 0 : cseed[jLayer].UpdateUsed();
2894 0 : cseed[jLayer].ResetClusterIter();
2895 0 : while((cl = cseed[jLayer].NextCluster())){
2896 0 : if(!cl->IsInChamber()) nNotInChamber++;
2897 : }
2898 : //printf("clusters[%d], used[%d], not in chamber[%d]\n", cseed[jLayer].GetN(), cseed[jLayer].GetNUsed(), nNotInChamber);
2899 0 : if(cseed[jLayer].GetN() - (cseed[jLayer].GetNUsed() + nNotInChamber) < 5) continue; // checking for Cluster which are not in chamber is a much stronger restriction on real data
2900 : }
2901 0 : mlayers++;
2902 0 : }
2903 :
2904 0 : if(mlayers < kNSeedPlanes){
2905 0 : AliDebug(2, Form("Found only %d tracklets out of %d. Skip.", mlayers, kNSeedPlanes));
2906 0 : AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2907 0 : continue;
2908 : }
2909 :
2910 : // temporary exit door for the HLT
2911 0 : if(fkReconstructor->IsHLT()){
2912 : // attach clusters to extrapolation chambers
2913 0 : for(int iLayer=0; iLayer<kNPlanes-kNSeedPlanes; iLayer++){
2914 0 : Int_t jLayer = planesExt[iLayer];
2915 0 : if(!(chamber = stack[jLayer])) continue;
2916 0 : if(!cseed[jLayer].AttachClusters(chamber, kTRUE)) continue;
2917 0 : cseed[jLayer].Fit();
2918 0 : }
2919 : //FitTiltedRiemanConstraint(&cseed[0], GetZ());
2920 0 : fTrackQuality[ntracks] = 1.; // dummy value
2921 0 : ntracks++;
2922 0 : if(ntracks == kMaxTracksStack) return ntracks;
2923 0 : cseed += 6;
2924 0 : continue;
2925 : }
2926 :
2927 :
2928 : // Update Seeds and calculate Likelihood
2929 : // fit tracklets and cook likelihood
2930 0 : Double_t chi2Vals[4];
2931 0 : chi2Vals[0] = FitTiltedRieman(&cseed[0], kTRUE);
2932 0 : for(int iLayer=0; iLayer<kNSeedPlanes; iLayer++){
2933 0 : Int_t jLayer = planes[iLayer];
2934 0 : cseed[jLayer].Fit(1);
2935 : }
2936 0 : Double_t like = CookLikelihood(&cseed[0], planes); // to be checked
2937 :
2938 0 : if (TMath::Log(1.E-9 + like) < fkRecoParam->GetTrackLikelihood()){
2939 0 : AliDebug(3, Form("Filter on likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
2940 0 : AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2941 0 : continue;
2942 : }
2943 : //AliInfo(Form("Passed likelihood %f[%e].", TMath::Log(1.E-9 + like), like));
2944 :
2945 : // book preliminry results
2946 : //seedQuality[ntracks] = like;
2947 0 : fSeedLayer[ntracks] = config;/*sLayer;*/
2948 :
2949 : // attach clusters to the extrapolation seeds
2950 : Int_t elayers(0);
2951 0 : for(int iLayer=0; iLayer<kNPlanes-kNSeedPlanes; iLayer++){
2952 0 : Int_t jLayer = planesExt[iLayer];
2953 0 : if(!(chamber = stack[jLayer])) continue;
2954 :
2955 : // fit extrapolated seed
2956 0 : if ((jLayer == 0) && !(cseed[1].IsOK())) continue;
2957 0 : if ((jLayer == 5) && !(cseed[4].IsOK())) continue;
2958 0 : AliTRDseedV1 pseed = cseed[jLayer];
2959 0 : if(!pseed.AttachClusters(chamber, kTRUE)) continue;
2960 0 : pseed.Fit(1);
2961 0 : cseed[jLayer] = pseed;
2962 0 : chi2Vals[0] = FitTiltedRieman(cseed, kTRUE);
2963 0 : cseed[jLayer].Fit(1);
2964 0 : elayers++;
2965 0 : }
2966 :
2967 : // AliInfo("Extrapolation done.");
2968 : // Debug Stream containing all the 6 tracklets
2969 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming())
2970 0 : ||AliTRDReconstructor::GetStreamLevel()>=2){
2971 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2972 0 : TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
2973 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
2974 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
2975 0 : cstreamer << "MakeSeeds1"
2976 0 : << "EventNumber=" << eventNumber
2977 0 : << "CandidateNumber=" << candidateNumber
2978 0 : << "S0.=" << &cseed[0]
2979 0 : << "S1.=" << &cseed[1]
2980 0 : << "S2.=" << &cseed[2]
2981 0 : << "S3.=" << &cseed[3]
2982 0 : << "S4.=" << &cseed[4]
2983 0 : << "S5.=" << &cseed[5]
2984 0 : << "FitterT.=" << tiltedRieman
2985 0 : << "\n";
2986 0 : }
2987 :
2988 0 : if(fkRecoParam->HasImproveTracklets()){
2989 0 : if(!ImproveSeedQuality(stack, cseed, chi2Vals[0])){
2990 0 : AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
2991 0 : AliDebug(3, "ImproveSeedQuality() failed.");
2992 : }
2993 : }
2994 :
2995 : // do track fitting with vertex constraint
2996 0 : if(fkRecoParam->IsVertexConstrained()) chi2Vals[1] = FitTiltedRiemanConstraint(&cseed[0], GetZ());
2997 0 : else chi2Vals[1] = -1.;
2998 0 : chi2Vals[2] = GetChi2Z(&cseed[0]);
2999 0 : chi2Vals[3] = GetChi2Phi(&cseed[0]);
3000 :
3001 : // calculate track quality
3002 0 : fTrackQuality[ntracks] = CalculateTrackLikelihood(&chi2Vals[0]);
3003 :
3004 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming())
3005 0 : ||AliTRDReconstructor::GetStreamLevel()>=2){
3006 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3007 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3008 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3009 0 : TLinearFitter *fitterTC = GetTiltedRiemanFitterConstraint();
3010 0 : TLinearFitter *fitterT = GetTiltedRiemanFitter();
3011 0 : Int_t ncls = 0;
3012 0 : for(Int_t iseed = 0; iseed < kNPlanes; iseed++){
3013 0 : ncls += cseed[iseed].IsOK() ? cseed[iseed].GetN2() : 0;
3014 : }
3015 0 : cstreamer << "MakeSeeds2"
3016 0 : << "EventNumber=" << eventNumber
3017 0 : << "CandidateNumber=" << candidateNumber
3018 0 : << "Chi2TR=" << chi2Vals[0]
3019 0 : << "Chi2TC=" << chi2Vals[1]
3020 0 : << "Nlayers=" << mlayers
3021 0 : << "NClusters=" << ncls
3022 0 : << "Like=" << like
3023 0 : << "S0.=" << &cseed[0]
3024 0 : << "S1.=" << &cseed[1]
3025 0 : << "S2.=" << &cseed[2]
3026 0 : << "S3.=" << &cseed[3]
3027 0 : << "S4.=" << &cseed[4]
3028 0 : << "S5.=" << &cseed[5]
3029 0 : << "FitterT.=" << fitterT
3030 0 : << "FitterTC.=" << fitterTC
3031 0 : << "\n";
3032 0 : }
3033 0 : if(AliLog::GetDebugLevel("TRD", "AliTRDtrackerV1")){
3034 : Double_t pt[]={0., 0.};
3035 0 : for(Int_t il(0); il<kNPlanes; il++){
3036 0 : if(!cseed[il].IsOK()) continue;
3037 0 : pt[0] = GetBz()*kB2C/cseed[il].GetC();
3038 0 : pt[1] = GetBz()*kB2C/cseed[il].GetC(1);
3039 0 : break;
3040 : }
3041 0 : AliDebug(2, Form("Candidate[%2d] pt[%7.3f %7.3f] Q[%e]\n"
3042 : " [0] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
3043 : " [1] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
3044 : " [2] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
3045 : " [3] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
3046 : " [4] x[%6.2f] n[%2d] nu[%d] OK[%c]\n"
3047 : " [5] x[%6.2f] n[%2d] nu[%d] OK[%c]"
3048 : , ntracks, pt[0], pt[1], fTrackQuality[ntracks]
3049 : ,cseed[0].GetX(), cseed[0].GetN(), cseed[0].GetNUsed(), cseed[0].IsOK()?'y':'n'
3050 : ,cseed[1].GetX(), cseed[1].GetN(), cseed[1].GetNUsed(), cseed[1].IsOK()?'y':'n'
3051 : ,cseed[2].GetX(), cseed[2].GetN(), cseed[2].GetNUsed(), cseed[2].IsOK()?'y':'n'
3052 : ,cseed[3].GetX(), cseed[3].GetN(), cseed[3].GetNUsed(), cseed[3].IsOK()?'y':'n'
3053 : ,cseed[4].GetX(), cseed[4].GetN(), cseed[4].GetNUsed(), cseed[4].IsOK()?'y':'n'
3054 : ,cseed[5].GetX(), cseed[5].GetN(), cseed[5].GetNUsed(), cseed[5].IsOK()?'y':'n'));
3055 0 : }
3056 0 : ntracks++;
3057 0 : AliTRDtrackerDebug::SetCandidateNumber(AliTRDtrackerDebug::GetCandidateNumber() + 1);
3058 0 : if(ntracks == kMaxTracksStack){
3059 0 : AliWarning(Form("Number of seeds reached maximum allowed (%d) in stack.", kMaxTracksStack));
3060 0 : return ntracks;
3061 : }
3062 0 : cseed += 6;
3063 0 : }
3064 0 : }
3065 0 : }
3066 :
3067 0 : return ntracks;
3068 0 : }
3069 :
3070 : //_____________________________________________________________________________
3071 : AliTRDtrackV1* AliTRDtrackerV1::MakeTrack(AliTRDseedV1 * const tracklet)
3072 : {
3073 : //
3074 : // Build a TRD track out of tracklet candidates
3075 : //
3076 : // Parameters :
3077 : // seeds : array of tracklets
3078 : // params : array of track parameters as they are estimated by stand alone tracker. 7 elements.
3079 : // [0] - radial position of the track at reference point
3080 : // [1] - y position of the fit at [0]
3081 : // [2] - z position of the fit at [0]
3082 : // [3] - snp of the first tracklet
3083 : // [4] - tgl of the first tracklet
3084 : // [5] - curvature of the Riemann fit - 1/pt
3085 : // [6] - sector rotation angle
3086 : //
3087 : // Output :
3088 : // The TRD track.
3089 : //
3090 : // Initialize the TRD track based on the parameters of the fit and a parametric covariance matrix
3091 : // (diagonal with constant variance terms TODO - correct parameterization)
3092 : //
3093 : // In case of HLT just register the tracklets in the tracker and return values of the Riemann fit. For the
3094 : // offline case perform a full Kalman filter on the already found tracklets (see AliTRDtrackerV1::FollowBackProlongation()
3095 : // for details). Do also MC label calculation and PID if propagation successfully.
3096 :
3097 0 : if(fkReconstructor->IsHLT()) FitTiltedRiemanConstraint(tracklet, 0);
3098 0 : Double_t alpha = AliTRDgeometry::GetAlpha();
3099 0 : Double_t shift = AliTRDgeometry::GetAlpha()/2.0;
3100 :
3101 : // find first good tracklet
3102 0 : Int_t idx(0); while(idx<kNPlanes && !tracklet[idx].IsOK()) idx++;
3103 0 : if(idx>2){ AliDebug(1, Form("Found suspect track start @ layer idx[%d]\n"
3104 : " %c[0] x0[%f] n[%d] nu[%d] OK[%c]\n"
3105 : " %c[1] x0[%f] n[%d] nu[%d] OK[%c]\n"
3106 : " %c[2] x0[%f] n[%d] nu[%d] OK[%c]\n"
3107 : " %c[3] x0[%f] n[%d] nu[%d] OK[%c]\n"
3108 : " %c[4] x0[%f] n[%d] nu[%d] OK[%c]\n"
3109 : " %c[5] x0[%f] n[%d] nu[%d] OK[%c]"
3110 : ,idx
3111 : ,idx==0?'*':' ', tracklet[0].GetX0(), tracklet[0].GetN(), tracklet[0].GetNUsed(), tracklet[0].IsOK()?'y':'n'
3112 : ,idx==1?'*':' ', tracklet[1].GetX0(), tracklet[1].GetN(), tracklet[1].GetNUsed(), tracklet[1].IsOK()?'y':'n'
3113 : ,idx==2?'*':' ', tracklet[2].GetX0(), tracklet[2].GetN(), tracklet[2].GetNUsed(), tracklet[2].IsOK()?'y':'n'
3114 : ,idx==3?'*':' ', tracklet[3].GetX0(), tracklet[3].GetN(), tracklet[3].GetNUsed(), tracklet[3].IsOK()?'y':'n'
3115 : ,idx==4?'*':' ', tracklet[4].GetX0(), tracklet[4].GetN(), tracklet[4].GetNUsed(), tracklet[4].IsOK()?'y':'n'
3116 : ,idx==5?'*':' ', tracklet[5].GetX0(), tracklet[5].GetN(), tracklet[5].GetNUsed(), tracklet[5].IsOK()?'y':'n'));
3117 0 : return NULL;
3118 : }
3119 :
3120 : Double_t dx(5.);
3121 0 : Double_t x(tracklet[idx].GetX0() - dx);
3122 : // Build track parameters
3123 0 : Double_t params[] = {
3124 0 : tracklet[idx].GetYref(0) - dx*tracklet[idx].GetYref(1) // y
3125 0 : ,tracklet[idx].GetZref(0) - dx*tracklet[idx].GetZref(1) // z
3126 0 : ,TMath::Sin(TMath::ATan(tracklet[idx].GetYref(1))) // snp
3127 0 : ,tracklet[idx].GetZref(1) / TMath::Sqrt(1. + tracklet[idx].GetYref(1) * tracklet[idx].GetYref(1)) // tgl
3128 0 : ,tracklet[idx].GetC(fkReconstructor->IsHLT()?1:0) // curvature -> 1/pt
3129 : };
3130 0 : Int_t sector(fGeom->GetSector(tracklet[idx].GetDetector()));
3131 :
3132 0 : Double_t c[15];
3133 0 : c[ 0] = 0.2; // s^2_y
3134 0 : c[ 1] = 0.0; c[ 2] = 2.0; // s^2_z
3135 0 : c[ 3] = 0.0; c[ 4] = 0.0; c[ 5] = 0.02; // s^2_snp
3136 0 : c[ 6] = 0.0; c[ 7] = 0.0; c[ 8] = 0.0; c[ 9] = 0.1; // s^2_tgl
3137 0 : c[10] = 0.0; c[11] = 0.0; c[12] = 0.0; c[13] = 0.0; c[14] = params[4]*params[4]*0.01; // s^2_1/pt
3138 :
3139 0 : AliTRDtrackV1 track(tracklet, params, c, x, sector*alpha+shift);
3140 :
3141 : AliTRDseedV1 *ptrTracklet = NULL;
3142 :
3143 : // skip Kalman filter for HLT
3144 : if(/*fkReconstructor->IsHLT()*/kFALSE){
3145 : for (Int_t jLayer = 0; jLayer < AliTRDgeometry::kNlayer; jLayer++) {
3146 : track.UnsetTracklet(jLayer);
3147 : ptrTracklet = &tracklet[jLayer];
3148 : if(!ptrTracklet->IsOK()) continue;
3149 : if(TMath::Abs(ptrTracklet->GetYref(1) - ptrTracklet->GetYfit(1)) >= .2) continue; // check this condition with Marian
3150 : ptrTracklet = SetTracklet(ptrTracklet);
3151 : ptrTracklet->UseClusters();
3152 : track.SetTracklet(ptrTracklet, fTracklets->GetEntriesFast()-1);
3153 : }
3154 : AliTRDtrackV1 *ptrTrack = SetTrack(&track);
3155 : ptrTrack->CookPID();
3156 : ptrTrack->CookLabel(.9);
3157 : ptrTrack->SetReconstructor(fkReconstructor);
3158 : return ptrTrack;
3159 : }
3160 :
3161 : // prevent the error message in AliTracker::MeanMaterialBudget: "start point out of geometry"
3162 0 : if(TMath::Abs(track.GetX()) + TMath::Abs(track.GetY()) + TMath::Abs(track.GetZ()) > 10000) return NULL;
3163 :
3164 0 : track.ResetCovariance(1);
3165 0 : Int_t nc = TMath::Abs(FollowBackProlongation(track));
3166 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 5 && fkReconstructor->IsDebugStreaming())
3167 0 : ||AliTRDReconstructor::GetStreamLevel()>5){
3168 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3169 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3170 0 : Double_t p[5]; // Track Params for the Debug Stream
3171 0 : track.GetExternalParameters(x, p);
3172 0 : TTreeSRedirector &cs = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3173 0 : cs << "MakeTrack"
3174 0 : << "EventNumber=" << eventNumber
3175 0 : << "CandidateNumber=" << candidateNumber
3176 0 : << "nc=" << nc
3177 0 : << "X=" << x
3178 0 : << "Y=" << p[0]
3179 0 : << "Z=" << p[1]
3180 0 : << "snp=" << p[2]
3181 0 : << "tnd=" << p[3]
3182 0 : << "crv=" << p[4]
3183 0 : << "Yin=" << params[0]
3184 0 : << "Zin=" << params[1]
3185 0 : << "snpin=" << params[2]
3186 0 : << "tndin=" << params[3]
3187 0 : << "crvin=" << params[4]
3188 0 : << "track.=" << &track
3189 0 : << "\n";
3190 0 : }
3191 0 : if (nc < 30){
3192 0 : UnsetTrackletsTrack(&track);
3193 0 : return NULL;
3194 : }
3195 0 : AliTRDtrackV1 *ptrTrack = SetTrack(&track);
3196 0 : ptrTrack->SetReconstructor(fkReconstructor);
3197 0 : ptrTrack->CookLabel(.9);
3198 0 : for(Int_t il(kNPlanes); il--;){
3199 0 : if(!(ptrTracklet = ptrTrack->GetTracklet(il))) continue;
3200 0 : ptrTracklet->UseClusters();
3201 : }
3202 :
3203 : // computes PID for track
3204 0 : ptrTrack->CookPID();
3205 : // update calibration references using this track
3206 0 : AliTRDCalibraFillHisto *calibra = AliTRDCalibraFillHisto::Instance();
3207 0 : if(!calibra){
3208 0 : AliInfo("Could not get Calibra instance.");
3209 0 : } else if(calibra->GetHisto2d()){
3210 0 : calibra->UpdateHistogramsV1(ptrTrack);
3211 : }
3212 : return ptrTrack;
3213 0 : }
3214 :
3215 :
3216 : //____________________________________________________________________
3217 : Bool_t AliTRDtrackerV1::ImproveSeedQuality(AliTRDtrackingChamber **stack, AliTRDseedV1 *cseed, Double_t &chi2)
3218 : {
3219 : //
3220 : // Sort tracklets according to "quality" and try to "improve" the first 4 worst
3221 : //
3222 : // Parameters :
3223 : // layers : Array of propagation layers for a stack/supermodule
3224 : // cseed : Array of 6 seeding tracklets which has to be improved
3225 : //
3226 : // Output :
3227 : // cssed : Improved seeds
3228 : //
3229 : // Detailed description
3230 : //
3231 : // Iterative procedure in which new clusters are searched for each
3232 : // tracklet seed such that the seed quality (see AliTRDseed::GetQuality())
3233 : // can be maximized. If some optimization is found the old seeds are replaced.
3234 : //
3235 : // debug level: 7
3236 : //
3237 :
3238 : // make a local working copy
3239 : AliTRDtrackingChamber *chamber = NULL;
3240 0 : AliTRDseedV1 bseed[AliTRDgeometry::kNlayer];
3241 :
3242 0 : Float_t quality(1.e3),
3243 0 : lQuality[AliTRDgeometry::kNlayer] = {1.e3, 1.e3, 1.e3, 1.e3, 1.e3, 1.e3};
3244 : Int_t rLayers(0);
3245 0 : for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;){
3246 0 : bseed[jLayer] = cseed[jLayer];
3247 0 : if(!bseed[jLayer].IsOK()) continue;
3248 0 : rLayers++;
3249 0 : lQuality[jLayer] = bseed[jLayer].GetQuality(kTRUE);
3250 0 : quality += lQuality[jLayer];
3251 : }
3252 0 : if (rLayers > 0) {
3253 0 : quality /= rLayers;
3254 0 : }
3255 0 : AliDebug(2, Form("Start N[%d] Q[%f] chi2[%f]", rLayers, quality, chi2));
3256 :
3257 0 : for (Int_t iter = 0; iter < 4; iter++) {
3258 : // Try better cluster set
3259 : Int_t nLayers(0); Float_t qualitynew(0.);
3260 0 : Int_t indexes[4*AliTRDgeometry::kNlayer];
3261 0 : TMath::Sort(Int_t(AliTRDgeometry::kNlayer), lQuality, indexes, kFALSE);
3262 0 : for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;) {
3263 0 : Int_t bLayer = indexes[jLayer];
3264 0 : bseed[bLayer].Reset("c");
3265 0 : if(!(chamber = stack[bLayer])) continue;
3266 0 : if(!bseed[bLayer].AttachClusters(chamber, kTRUE)) continue;
3267 0 : bseed[bLayer].Fit(1);
3268 0 : if(!bseed[bLayer].IsOK()) continue;
3269 0 : nLayers++;
3270 0 : lQuality[jLayer] = bseed[jLayer].GetQuality(kTRUE);
3271 0 : qualitynew += lQuality[jLayer];
3272 0 : }
3273 0 : if(rLayers > nLayers){
3274 0 : AliDebug(1, Form("Lost %d tracklets while improving.", rLayers-nLayers));
3275 0 : return iter>0?kTRUE:kFALSE;
3276 : } else rLayers=nLayers;
3277 0 : qualitynew /= rLayers;
3278 :
3279 0 : if(qualitynew > quality){
3280 0 : AliDebug(4, Form("Quality[%f] worsen in iter[%d] to ref[%f].", qualitynew, iter, quality));
3281 0 : return iter>0?kTRUE:kFALSE;
3282 : } else quality = qualitynew;
3283 :
3284 : // try improve track parameters
3285 0 : Float_t chi2new = FitTiltedRieman(bseed, kTRUE);
3286 0 : if(chi2new > chi2){
3287 0 : AliDebug(4, Form("Chi2[%f] worsen in iter[%d] to ref[%f].", chi2new, iter, chi2));
3288 0 : return iter>0?kTRUE:kFALSE;
3289 0 : } else chi2 = chi2new;
3290 :
3291 : // store better tracklets
3292 0 : for(Int_t jLayer=AliTRDgeometry::kNlayer; jLayer--;) cseed[jLayer]=bseed[jLayer];
3293 0 : AliDebug(2, Form("Iter[%d] Q[%f] chi2[%f]", iter, quality, chi2));
3294 :
3295 :
3296 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 7 && fkReconstructor->IsDebugStreaming())
3297 0 : ||AliTRDReconstructor::GetStreamLevel()>=7){
3298 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3299 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3300 0 : TLinearFitter *tiltedRieman = GetTiltedRiemanFitter();
3301 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3302 0 : cstreamer << "ImproveSeedQuality"
3303 0 : << "EventNumber=" << eventNumber
3304 0 : << "CandidateNumber=" << candidateNumber
3305 0 : << "Iteration=" << iter
3306 0 : << "S0.=" << &cseed[0]
3307 0 : << "S1.=" << &cseed[1]
3308 0 : << "S2.=" << &cseed[2]
3309 0 : << "S3.=" << &cseed[3]
3310 0 : << "S4.=" << &cseed[4]
3311 0 : << "S5.=" << &cseed[5]
3312 0 : << "FitterT.=" << tiltedRieman
3313 0 : << "\n";
3314 0 : }
3315 0 : } // Loop: iter
3316 :
3317 : // we are sure that at least 4 tracklets are OK !
3318 0 : return kTRUE;
3319 0 : }
3320 :
3321 : //_________________________________________________________________________
3322 : Double_t AliTRDtrackerV1::CalculateTrackLikelihood(Double_t *chi2){
3323 : //
3324 : // Calculates the Track Likelihood value. This parameter serves as main quality criterion for
3325 : // the track selection
3326 : // The likelihood value containes:
3327 : // - The chi2 values from the both fitters and the chi2 values in z-direction from a linear fit
3328 : // - The Sum of the Parameter |slope_ref - slope_fit|/Sigma of the tracklets
3329 : // For all Parameters an exponential dependency is used
3330 : //
3331 : // Parameters: - Array of tracklets (AliTRDseedV1) related to the track candidate
3332 : // - Array of chi2 values:
3333 : // * Non-Constrained Tilted Riemann fit
3334 : // * Vertex-Constrained Tilted Riemann fit
3335 : // * z-Direction from Linear fit
3336 : // Output: - The calculated track likelihood
3337 : //
3338 : // debug level 2
3339 : //
3340 :
3341 : // Non-constrained Tilted Riemann
3342 0 : Double_t likeChi2TR = TMath::Exp(-chi2[0] * 0.0078);
3343 : // Constrained Tilted Riemann
3344 0 : Double_t likeChi2TC(1.);
3345 0 : if(chi2[1]>0.){
3346 0 : likeChi2TC = TMath::Exp(-chi2[1] * 0.677);
3347 0 : Double_t r = likeChi2TC/likeChi2TR;
3348 0 : if(r>1.e2){;} // -> a primary track use TC
3349 0 : else if(r<1.e2) // -> a secondary track use TR
3350 0 : likeChi2TC =1.;
3351 : else{;} // -> test not conclusive
3352 0 : }
3353 : // Chi2 only on Z direction
3354 0 : Double_t likeChi2Z = TMath::Exp(-chi2[2] * 0.14);
3355 : // Chi2 angular resolution
3356 0 : Double_t likeChi2Phi= TMath::Exp(-chi2[3] * 3.23);
3357 :
3358 0 : Double_t trackLikelihood = likeChi2Z * likeChi2TR * likeChi2TC * likeChi2Phi;
3359 :
3360 0 : AliDebug(2, Form("Likelihood [%e]\n"
3361 : " Rieman : chi2[%f] likelihood[%6.2e]\n"
3362 : " Vertex : chi2[%f] likelihood[%6.2e]\n"
3363 : " Z : chi2[%f] likelihood[%6.2e]\n"
3364 : " Phi : chi2[%f] likelihood[%6.2e]"
3365 : , trackLikelihood
3366 : , chi2[0], likeChi2TR
3367 : , chi2[1], likeChi2TC
3368 : , chi2[2], likeChi2Z
3369 : , chi2[3], likeChi2Phi
3370 : ));
3371 :
3372 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming())
3373 0 : ||AliTRDReconstructor::GetStreamLevel()>=2){
3374 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3375 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3376 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3377 0 : cstreamer << "CalculateTrackLikelihood0"
3378 0 : << "EventNumber=" << eventNumber
3379 0 : << "CandidateNumber=" << candidateNumber
3380 0 : << "LikeChi2Z=" << likeChi2Z
3381 0 : << "LikeChi2TR=" << likeChi2TR
3382 0 : << "LikeChi2TC=" << likeChi2TC
3383 0 : << "LikeChi2Phi=" << likeChi2Phi
3384 0 : << "TrackLikelihood=" << trackLikelihood
3385 0 : << "\n";
3386 0 : }
3387 :
3388 0 : return trackLikelihood;
3389 0 : }
3390 :
3391 : //____________________________________________________________________
3392 : Double_t AliTRDtrackerV1::CookLikelihood(AliTRDseedV1 *cseed, Int_t planes[4])
3393 : {
3394 : //
3395 : // Calculate the probability of this track candidate.
3396 : //
3397 : // Parameters :
3398 : // cseeds : array of candidate tracklets
3399 : // planes : array of seeding planes (see seeding configuration)
3400 : // chi2 : chi2 values (on the Z and Y direction) from the rieman fit of the track.
3401 : //
3402 : // Output :
3403 : // likelihood value
3404 : //
3405 : // Detailed description
3406 : //
3407 : // The track quality is estimated based on the following 4 criteria:
3408 : // 1. precision of the rieman fit on the Y direction (likea)
3409 : // 2. chi2 on the Y direction (likechi2y)
3410 : // 3. chi2 on the Z direction (likechi2z)
3411 : // 4. number of attached clusters compared to a reference value
3412 : // (see AliTRDrecoParam::fkFindable) (likeN)
3413 : //
3414 : // The distributions for each type of probabilities are given below as of
3415 : // (date). They have to be checked to assure consistency of estimation.
3416 : //
3417 :
3418 : // ratio of the total number of clusters/track which are expected to be found by the tracker.
3419 0 : Double_t chi2y = GetChi2Y(&cseed[0]);
3420 0 : Double_t chi2z = GetChi2Z(&cseed[0]);
3421 :
3422 0 : Float_t nclusters = 0.;
3423 0 : Double_t sumda = 0.;
3424 0 : for(UChar_t ilayer = 0; ilayer < 4; ilayer++){
3425 0 : Int_t jlayer = planes[ilayer];
3426 0 : nclusters += cseed[jlayer].GetN2();
3427 0 : sumda += TMath::Abs(cseed[jlayer].GetYfit(1) - cseed[jlayer].GetYref(1));
3428 : }
3429 0 : nclusters *= .25;
3430 :
3431 0 : Double_t likea = TMath::Exp(-sumda * fkRecoParam->GetPhiSlope());
3432 0 : Double_t likechi2y = 0.0000000001;
3433 0 : if (fkReconstructor->IsCosmic() || chi2y < fkRecoParam->GetChi2YCut()) likechi2y += TMath::Exp(-TMath::Sqrt(chi2y) * fkRecoParam->GetChi2YSlope());
3434 0 : Double_t likechi2z = TMath::Exp(-chi2z * fkRecoParam->GetChi2ZSlope());
3435 0 : Double_t likeN = TMath::Exp(-(fkRecoParam->GetNMeanClusters() - nclusters) / fkRecoParam->GetNSigmaClusters());
3436 0 : Double_t like = likea * likechi2y * likechi2z * likeN;
3437 :
3438 0 : if((fkRecoParam->GetStreamLevel(AliTRDrecoParam::kTracker) >= 2 && fkReconstructor->IsDebugStreaming())
3439 0 : ||AliTRDReconstructor::GetStreamLevel()>=2){
3440 0 : Int_t eventNumber = AliTRDtrackerDebug::GetEventNumber();
3441 0 : Int_t candidateNumber = AliTRDtrackerDebug::GetCandidateNumber();
3442 0 : Int_t nTracklets = 0; Float_t meanNcls = 0;
3443 0 : for(Int_t iseed=0; iseed < kNPlanes; iseed++){
3444 0 : if(!cseed[iseed].IsOK()) continue;
3445 0 : nTracklets++;
3446 0 : meanNcls += cseed[iseed].GetN2();
3447 0 : }
3448 0 : if(nTracklets) meanNcls /= nTracklets;
3449 : // The Debug Stream contains the seed
3450 0 : TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
3451 0 : cstreamer << "CookLikelihood"
3452 0 : << "EventNumber=" << eventNumber
3453 0 : << "CandidateNumber=" << candidateNumber
3454 0 : << "tracklet0.=" << &cseed[0]
3455 0 : << "tracklet1.=" << &cseed[1]
3456 0 : << "tracklet2.=" << &cseed[2]
3457 0 : << "tracklet3.=" << &cseed[3]
3458 0 : << "tracklet4.=" << &cseed[4]
3459 0 : << "tracklet5.=" << &cseed[5]
3460 0 : << "sumda=" << sumda
3461 0 : << "chi2y=" << chi2y
3462 0 : << "chi2z=" << chi2z
3463 0 : << "likea=" << likea
3464 0 : << "likechi2y=" << likechi2y
3465 0 : << "likechi2z=" << likechi2z
3466 0 : << "nclusters=" << nclusters
3467 0 : << "likeN=" << likeN
3468 0 : << "like=" << like
3469 0 : << "meanncls=" << meanNcls
3470 0 : << "\n";
3471 0 : }
3472 :
3473 0 : return like;
3474 0 : }
3475 :
3476 : //____________________________________________________________________
3477 : void AliTRDtrackerV1::GetSeedingConfig(Int_t iconfig, Int_t planes[4])
3478 : {
3479 : //
3480 : // Map seeding configurations to detector planes.
3481 : //
3482 : // Parameters :
3483 : // iconfig : configuration index
3484 : // planes : member planes of this configuration. On input empty.
3485 : //
3486 : // Output :
3487 : // planes : contains the planes which are defining the configuration
3488 : //
3489 : // Detailed description
3490 : //
3491 : // Here is the list of seeding planes configurations together with
3492 : // their topological classification:
3493 : //
3494 : // 0 - 5432 TQ 0
3495 : // 1 - 4321 TQ 0
3496 : // 2 - 3210 TQ 0
3497 : // 3 - 5321 TQ 1
3498 : // 4 - 4210 TQ 1
3499 : // 5 - 5431 TQ 1
3500 : // 6 - 4320 TQ 1
3501 : // 7 - 5430 TQ 2
3502 : // 8 - 5210 TQ 2
3503 : // 9 - 5421 TQ 3
3504 : // 10 - 4310 TQ 3
3505 : // 11 - 5410 TQ 4
3506 : // 12 - 5420 TQ 5
3507 : // 13 - 5320 TQ 5
3508 : // 14 - 5310 TQ 5
3509 : //
3510 : // The topologic quality is modeled as follows:
3511 : // 1. The general model is define by the equation:
3512 : // p(conf) = exp(-conf/2)
3513 : // 2. According to the topologic classification, configurations from the same
3514 : // class are assigned the agerage value over the model values.
3515 : // 3. Quality values are normalized.
3516 : //
3517 : // The topologic quality distribution as function of configuration is given below:
3518 : //Begin_Html
3519 : // <img src="gif/topologicQA.gif">
3520 : //End_Html
3521 : //
3522 :
3523 0 : switch(iconfig){
3524 : case 0: // 5432 TQ 0
3525 0 : planes[0] = 2;
3526 0 : planes[1] = 3;
3527 0 : planes[2] = 4;
3528 0 : planes[3] = 5;
3529 0 : break;
3530 : case 1: // 4321 TQ 0
3531 0 : planes[0] = 1;
3532 0 : planes[1] = 2;
3533 0 : planes[2] = 3;
3534 0 : planes[3] = 4;
3535 0 : break;
3536 : case 2: // 3210 TQ 0
3537 0 : planes[0] = 0;
3538 0 : planes[1] = 1;
3539 0 : planes[2] = 2;
3540 0 : planes[3] = 3;
3541 0 : break;
3542 : case 3: // 5321 TQ 1
3543 0 : planes[0] = 1;
3544 0 : planes[1] = 2;
3545 0 : planes[2] = 3;
3546 0 : planes[3] = 5;
3547 0 : break;
3548 : case 4: // 4210 TQ 1
3549 0 : planes[0] = 0;
3550 0 : planes[1] = 1;
3551 0 : planes[2] = 2;
3552 0 : planes[3] = 4;
3553 0 : break;
3554 : case 5: // 5431 TQ 1
3555 0 : planes[0] = 1;
3556 0 : planes[1] = 3;
3557 0 : planes[2] = 4;
3558 0 : planes[3] = 5;
3559 0 : break;
3560 : case 6: // 4320 TQ 1
3561 0 : planes[0] = 0;
3562 0 : planes[1] = 2;
3563 0 : planes[2] = 3;
3564 0 : planes[3] = 4;
3565 0 : break;
3566 : case 7: // 5430 TQ 2
3567 0 : planes[0] = 0;
3568 0 : planes[1] = 3;
3569 0 : planes[2] = 4;
3570 0 : planes[3] = 5;
3571 0 : break;
3572 : case 8: // 5210 TQ 2
3573 0 : planes[0] = 0;
3574 0 : planes[1] = 1;
3575 0 : planes[2] = 2;
3576 0 : planes[3] = 5;
3577 0 : break;
3578 : case 9: // 5421 TQ 3
3579 0 : planes[0] = 1;
3580 0 : planes[1] = 2;
3581 0 : planes[2] = 4;
3582 0 : planes[3] = 5;
3583 0 : break;
3584 : case 10: // 4310 TQ 3
3585 0 : planes[0] = 0;
3586 0 : planes[1] = 1;
3587 0 : planes[2] = 3;
3588 0 : planes[3] = 4;
3589 0 : break;
3590 : case 11: // 5410 TQ 4
3591 0 : planes[0] = 0;
3592 0 : planes[1] = 1;
3593 0 : planes[2] = 4;
3594 0 : planes[3] = 5;
3595 0 : break;
3596 : case 12: // 5420 TQ 5
3597 0 : planes[0] = 0;
3598 0 : planes[1] = 2;
3599 0 : planes[2] = 4;
3600 0 : planes[3] = 5;
3601 0 : break;
3602 : case 13: // 5320 TQ 5
3603 0 : planes[0] = 0;
3604 0 : planes[1] = 2;
3605 0 : planes[2] = 3;
3606 0 : planes[3] = 5;
3607 0 : break;
3608 : case 14: // 5310 TQ 5
3609 0 : planes[0] = 0;
3610 0 : planes[1] = 1;
3611 0 : planes[2] = 3;
3612 0 : planes[3] = 5;
3613 0 : break;
3614 : }
3615 0 : }
3616 :
3617 : //____________________________________________________________________
3618 : void AliTRDtrackerV1::GetExtrapolationConfig(Int_t iconfig, Int_t planes[2])
3619 : {
3620 : //
3621 : // Returns the extrapolation planes for a seeding configuration.
3622 : //
3623 : // Parameters :
3624 : // iconfig : configuration index
3625 : // planes : planes which are not in this configuration. On input empty.
3626 : //
3627 : // Output :
3628 : // planes : contains the planes which are not in the configuration
3629 : //
3630 : // Detailed description
3631 : //
3632 :
3633 0 : switch(iconfig){
3634 : case 0: // 5432 TQ 0
3635 0 : planes[0] = 1;
3636 0 : planes[1] = 0;
3637 0 : break;
3638 : case 1: // 4321 TQ 0
3639 0 : planes[0] = 5;
3640 0 : planes[1] = 0;
3641 0 : break;
3642 : case 2: // 3210 TQ 0
3643 0 : planes[0] = 4;
3644 0 : planes[1] = 5;
3645 0 : break;
3646 : case 3: // 5321 TQ 1
3647 0 : planes[0] = 4;
3648 0 : planes[1] = 0;
3649 0 : break;
3650 : case 4: // 4210 TQ 1
3651 0 : planes[0] = 5;
3652 0 : planes[1] = 3;
3653 0 : break;
3654 : case 5: // 5431 TQ 1
3655 0 : planes[0] = 2;
3656 0 : planes[1] = 0;
3657 0 : break;
3658 : case 6: // 4320 TQ 1
3659 0 : planes[0] = 5;
3660 0 : planes[1] = 1;
3661 0 : break;
3662 : case 7: // 5430 TQ 2
3663 0 : planes[0] = 2;
3664 0 : planes[1] = 1;
3665 0 : break;
3666 : case 8: // 5210 TQ 2
3667 0 : planes[0] = 4;
3668 0 : planes[1] = 3;
3669 0 : break;
3670 : case 9: // 5421 TQ 3
3671 0 : planes[0] = 3;
3672 0 : planes[1] = 0;
3673 0 : break;
3674 : case 10: // 4310 TQ 3
3675 0 : planes[0] = 5;
3676 0 : planes[1] = 2;
3677 0 : break;
3678 : case 11: // 5410 TQ 4
3679 0 : planes[0] = 3;
3680 0 : planes[1] = 2;
3681 0 : break;
3682 : case 12: // 5420 TQ 5
3683 0 : planes[0] = 3;
3684 0 : planes[1] = 1;
3685 0 : break;
3686 : case 13: // 5320 TQ 5
3687 0 : planes[0] = 4;
3688 0 : planes[1] = 1;
3689 0 : break;
3690 : case 14: // 5310 TQ 5
3691 0 : planes[0] = 4;
3692 0 : planes[1] = 2;
3693 0 : break;
3694 : }
3695 0 : }
3696 :
3697 : //____________________________________________________________________
3698 : AliCluster* AliTRDtrackerV1::GetCluster(Int_t idx) const
3699 : {
3700 0 : if(!fClusters) return NULL;
3701 0 : Int_t ncls = fClusters->GetEntriesFast();
3702 0 : return idx >= 0 && idx < ncls ? (AliCluster*)fClusters->UncheckedAt(idx) : NULL;
3703 0 : }
3704 :
3705 : //____________________________________________________________________
3706 : AliTRDseedV1* AliTRDtrackerV1::GetTracklet(Int_t idx) const
3707 : {
3708 230 : if(!fTracklets) return NULL;
3709 115 : Int_t ntrklt = fTracklets->GetEntriesFast();
3710 460 : return idx >= 0 && idx < ntrklt ? (AliTRDseedV1*)fTracklets->UncheckedAt(idx) : NULL;
3711 115 : }
3712 :
3713 : //____________________________________________________________________
3714 : AliKalmanTrack* AliTRDtrackerV1::GetTrack(Int_t idx) const
3715 : {
3716 0 : if(!fTracks) return NULL;
3717 0 : Int_t ntrk = fTracks->GetEntriesFast();
3718 0 : return idx >= 0 && idx < ntrk ? (AliKalmanTrack*)fTracks->UncheckedAt(idx) : NULL;
3719 0 : }
3720 :
3721 :
3722 :
3723 : // //_____________________________________________________________________________
3724 : // Int_t AliTRDtrackerV1::Freq(Int_t n, const Int_t *inlist
3725 : // , Int_t *outlist, Bool_t down)
3726 : // {
3727 : // //
3728 : // // Sort eleements according occurancy
3729 : // // The size of output array has is 2*n
3730 : // //
3731 : //
3732 : // if (n <= 0) {
3733 : // return 0;
3734 : // }
3735 : //
3736 : // Int_t *sindexS = new Int_t[n]; // Temporary array for sorting
3737 : // Int_t *sindexF = new Int_t[2*n];
3738 : // for (Int_t i = 0; i < n; i++) {
3739 : // sindexF[i] = 0;
3740 : // }
3741 : //
3742 : // TMath::Sort(n,inlist,sindexS,down);
3743 : //
3744 : // Int_t last = inlist[sindexS[0]];
3745 : // Int_t val = last;
3746 : // sindexF[0] = 1;
3747 : // sindexF[0+n] = last;
3748 : // Int_t countPos = 0;
3749 : //
3750 : // // Find frequency
3751 : // for (Int_t i = 1; i < n; i++) {
3752 : // val = inlist[sindexS[i]];
3753 : // if (last == val) {
3754 : // sindexF[countPos]++;
3755 : // }
3756 : // else {
3757 : // countPos++;
3758 : // sindexF[countPos+n] = val;
3759 : // sindexF[countPos]++;
3760 : // last = val;
3761 : // }
3762 : // }
3763 : // if (last == val) {
3764 : // countPos++;
3765 : // }
3766 : //
3767 : // // Sort according frequency
3768 : // TMath::Sort(countPos,sindexF,sindexS,kTRUE);
3769 : //
3770 : // for (Int_t i = 0; i < countPos; i++) {
3771 : // outlist[2*i ] = sindexF[sindexS[i]+n];
3772 : // outlist[2*i+1] = sindexF[sindexS[i]];
3773 : // }
3774 : //
3775 : // delete [] sindexS;
3776 : // delete [] sindexF;
3777 : //
3778 : // return countPos;
3779 : //
3780 : // }
3781 :
3782 :
3783 : //____________________________________________________________________
3784 : void AliTRDtrackerV1::ResetSeedTB()
3785 : {
3786 : // reset buffer for seeding time bin layers. If the time bin
3787 : // layers are not allocated this function allocates them
3788 :
3789 0 : for(Int_t isl=0; isl<kNSeedPlanes; isl++){
3790 0 : if(!fSeedTB[isl]) fSeedTB[isl] = new AliTRDchamberTimeBin();
3791 0 : else fSeedTB[isl]->Clear();
3792 : }
3793 0 : }
3794 :
3795 :
3796 : //_____________________________________________________________________________
3797 : Float_t AliTRDtrackerV1::GetChi2Y(const AliTRDseedV1 * const tracklets) const
3798 : {
3799 : // Calculates normalized chi2 in y-direction
3800 : // chi2 = Sum chi2 / n_tracklets
3801 :
3802 : Double_t chi2 = 0.; Int_t n = 0;
3803 0 : for(Int_t ipl = kNPlanes; ipl--;){
3804 0 : if(!tracklets[ipl].IsOK()) continue;
3805 0 : chi2 += tracklets[ipl].GetChi2Y();
3806 0 : n++;
3807 : }
3808 0 : return n ? chi2/n : 0.;
3809 : }
3810 :
3811 : //_____________________________________________________________________________
3812 : Float_t AliTRDtrackerV1::GetChi2Z(const AliTRDseedV1 *const tracklets) const
3813 : {
3814 : // Calculates normalized chi2 in z-direction
3815 : // chi2 = Sum chi2 / n_tracklets
3816 :
3817 : Double_t chi2 = 0; Int_t n = 0;
3818 0 : for(Int_t ipl = kNPlanes; ipl--;){
3819 0 : if(!tracklets[ipl].IsOK()) continue;
3820 0 : chi2 += tracklets[ipl].GetChi2Z();
3821 0 : n++;
3822 : }
3823 0 : return n ? chi2/n : 0.;
3824 : }
3825 :
3826 : //_____________________________________________________________________________
3827 : Float_t AliTRDtrackerV1::GetChi2Phi(const AliTRDseedV1 *const tracklets) const
3828 : {
3829 : // Calculates normalized chi2 for angular resolution
3830 : // chi2 = Sum chi2 / n_tracklets
3831 :
3832 : Double_t chi2 = 0; Int_t n = 0;
3833 0 : for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
3834 0 : if(!tracklets[iLayer].IsOK()) continue;
3835 0 : chi2 += tracklets[iLayer].GetChi2Phi();
3836 0 : n++;
3837 0 : }
3838 0 : return n ? chi2/n: 0.;
3839 : }
3840 :
3841 : //____________________________________________________________________
3842 : Float_t AliTRDtrackerV1::CalculateReferenceX(const AliTRDseedV1 *const tracklets){
3843 : //
3844 : // Calculates the reference x-position for the tilted Rieman fit defined as middle
3845 : // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
3846 : // are taken into account
3847 : //
3848 : // Parameters: - Array of tracklets(AliTRDseedV1)
3849 : //
3850 : // Output: - The reference x-position(Float_t)
3851 : // Only kept for compatibility with the old code
3852 : //
3853 : Int_t nDistances = 0;
3854 : Float_t meanDistance = 0.;
3855 : Int_t startIndex = 5;
3856 0 : for(Int_t il =5; il > 0; il--){
3857 0 : if(tracklets[il].IsOK() && tracklets[il -1].IsOK()){
3858 0 : Float_t xdiff = tracklets[il].GetX0() - tracklets[il -1].GetX0();
3859 0 : meanDistance += xdiff;
3860 0 : nDistances++;
3861 0 : }
3862 0 : if(tracklets[il].IsOK()) startIndex = il;
3863 : }
3864 0 : if(tracklets[0].IsOK()) startIndex = 0;
3865 0 : if(!nDistances){
3866 : // We should normally never get here
3867 0 : Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
3868 : Int_t iok = 0, idiff = 0;
3869 : // This attempt is worse and should be avoided:
3870 : // check for two chambers which are OK and repeat this without taking the mean value
3871 : // Strategy avoids a division by 0;
3872 0 : for(Int_t il = 5; il >= 0; il--){
3873 0 : if(tracklets[il].IsOK()){
3874 0 : xpos[iok] = tracklets[il].GetX0();
3875 0 : iok++;
3876 : startIndex = il;
3877 0 : }
3878 0 : if(iok) idiff++; // to get the right difference;
3879 0 : if(iok > 1) break;
3880 : }
3881 0 : if(iok > 1){
3882 0 : meanDistance = (xpos[0] - xpos[1])/idiff;
3883 : }
3884 : else{
3885 : // we have do not even have 2 layers which are OK? The we do not need to fit at all
3886 0 : return 331.;
3887 : }
3888 0 : }
3889 : else{
3890 0 : meanDistance /= nDistances;
3891 : }
3892 0 : return tracklets[startIndex].GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
3893 0 : }
3894 :
3895 : //_____________________________________________________________________________
3896 : Double_t AliTRDtrackerV1::FitTiltedRiemanV1(AliTRDseedV1 *const tracklets){
3897 : //
3898 : // Track Fitter Function using the new class implementation of
3899 : // the Rieman fit
3900 : //
3901 0 : AliTRDtrackFitterRieman fitter;
3902 0 : fitter.SetRiemanFitter(GetTiltedRiemanFitter());
3903 0 : fitter.Reset();
3904 0 : for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) fitter.SetTracklet(il, &tracklets[il]);
3905 0 : Double_t chi2 = fitter.Eval();
3906 : // Update the tracklets
3907 0 : Double_t cov[15]; Double_t x0;
3908 0 : memset(cov, 0, sizeof(Double_t) * 15);
3909 0 : for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++){
3910 0 : x0 = tracklets[il].GetX0();
3911 0 : tracklets[il].SetYref(0, fitter.GetYat(x0));
3912 0 : tracklets[il].SetZref(0, fitter.GetZat(x0));
3913 0 : tracklets[il].SetYref(1, fitter.GetDyDxAt(x0));
3914 0 : tracklets[il].SetZref(1, fitter.GetDzDx());
3915 0 : tracklets[il].SetC(fitter.GetCurvature());
3916 0 : fitter.GetCovAt(x0, cov);
3917 0 : tracklets[il].SetCovRef(cov);
3918 0 : tracklets[il].SetChi2(chi2);
3919 : }
3920 : return chi2;
3921 0 : }
3922 :
3923 : //____________________________________________________________________
3924 : void AliTRDtrackerV1::UnsetTrackletsTrack(const AliTRDtrackV1 * const track)
3925 : {
3926 : // Remove tracklets from tracker list attached to "track"
3927 : Int_t idx(-1);
3928 0 : for(Int_t il(0); il<kNPlanes; il++){
3929 0 : if((idx = track->GetTrackletIndex(il)) < 0) continue;
3930 0 : delete (fTracklets->RemoveAt(idx));
3931 : }
3932 0 : }
3933 :
3934 :
3935 : ///////////////////////////////////////////////////////
3936 : // //
3937 : // Resources of class AliTRDLeastSquare //
3938 : // //
3939 : ///////////////////////////////////////////////////////
3940 :
3941 : //_____________________________________________________________________________
3942 4 : AliTRDtrackerV1::AliTRDLeastSquare::AliTRDLeastSquare(){
3943 : //
3944 : // Constructor of the nested class AliTRDtrackFitterLeastSquare
3945 : //
3946 : // Fast solving linear regresion in 2D
3947 : // y=a + bx
3948 : // The data members have the following meaning
3949 : // fParams[0] : a
3950 : // fParams[1] : b
3951 : //
3952 : // fSums[0] : S
3953 : // fSums[1] : Sx
3954 : // fSums[2] : Sy
3955 : // fSums[3] : Sxy
3956 : // fSums[4] : Sxx
3957 : // fSums[5] : Syy
3958 : //
3959 : // fCovarianceMatrix[0] : s2a
3960 : // fCovarianceMatrix[1] : s2b
3961 : // fCovarianceMatrix[2] : cov(ab)
3962 :
3963 4 : memset(fParams, 0, sizeof(Double_t) * 2);
3964 2 : memset(fSums, 0, sizeof(Double_t) * 6);
3965 2 : memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
3966 :
3967 4 : }
3968 :
3969 : //_____________________________________________________________________________
3970 : void AliTRDtrackerV1::AliTRDLeastSquare::AddPoint(const Double_t *const x, Double_t y, Double_t sigmaY){
3971 : //
3972 : // Adding Point to the fitter
3973 : //
3974 :
3975 53814 : Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9);
3976 26907 : weight *= weight;
3977 : const Double_t &xpt = *x;
3978 : // printf("Adding point x = %f, y = %f, sigma = %f\n", xpt, y, sigmaY);
3979 26907 : fSums[0] += weight;
3980 26907 : fSums[1] += weight * xpt;
3981 26907 : fSums[2] += weight * y;
3982 26907 : fSums[3] += weight * xpt * y;
3983 26907 : fSums[4] += weight * xpt * xpt;
3984 26907 : fSums[5] += weight * y * y;
3985 26907 : }
3986 :
3987 : //_____________________________________________________________________________
3988 : void AliTRDtrackerV1::AliTRDLeastSquare::RemovePoint(const Double_t *const x, Double_t y, Double_t sigmaY){
3989 : //
3990 : // Remove Point from the sample
3991 : //
3992 :
3993 0 : Double_t weight = 1/(sigmaY > 1e-9 ? sigmaY : 1e-9);
3994 0 : weight *= weight;
3995 : const Double_t &xpt = *x;
3996 0 : fSums[0] -= weight;
3997 0 : fSums[1] -= weight * xpt;
3998 0 : fSums[2] -= weight * y;
3999 0 : fSums[3] -= weight * xpt * y;
4000 0 : fSums[4] -= weight * xpt * xpt;
4001 0 : fSums[5] -= weight * y * y;
4002 0 : }
4003 :
4004 : //_____________________________________________________________________________
4005 : Bool_t AliTRDtrackerV1::AliTRDLeastSquare::Eval(){
4006 : //
4007 : // Evaluation of the fit:
4008 : // Calculation of the parameters
4009 : // Calculation of the covariance matrix
4010 : //
4011 :
4012 3110 : Double_t det = fSums[0] * fSums[4] - fSums[1] *fSums[1];
4013 1555 : if(TMath::Abs(det)<1.e-30) return kFALSE;
4014 :
4015 : // for(Int_t isum = 0; isum < 5; isum++)
4016 : // printf("fSums[%d] = %f\n", isum, fSums[isum]);
4017 : // printf("denominator = %f\n", denominator);
4018 1555 : fParams[0] = (fSums[2] * fSums[4] - fSums[1] * fSums[3])/det;
4019 1555 : fParams[1] = (fSums[0] * fSums[3] - fSums[1] * fSums[2])/det;
4020 : // printf("fParams[0] = %f, fParams[1] = %f\n", fParams[0], fParams[1]);
4021 :
4022 : // Covariance matrix
4023 1555 : Double_t den = fSums[0]*fSums[4] - fSums[1]*fSums[1];
4024 1555 : fCovarianceMatrix[0] = fSums[4] / den;
4025 1555 : fCovarianceMatrix[1] = fSums[0] / den;
4026 1555 : fCovarianceMatrix[2] = -fSums[1] / den;
4027 : /* fCovarianceMatrix[0] = fSums[4] / fSums[0] - fSums[1] * fSums[1] / (fSums[0] * fSums[0]);
4028 : fCovarianceMatrix[1] = fSums[5] / fSums[0] - fSums[2] * fSums[2] / (fSums[0] * fSums[0]);
4029 : fCovarianceMatrix[2] = fSums[3] / fSums[0] - fSums[1] * fSums[2] / (fSums[0] * fSums[0]);*/
4030 :
4031 :
4032 :
4033 : return kTRUE;
4034 1555 : }
4035 :
4036 : //_____________________________________________________________________________
4037 : Double_t AliTRDtrackerV1::AliTRDLeastSquare::GetFunctionValue(const Double_t *const xpos) const {
4038 : //
4039 : // Returns the Function value of the fitted function at a given x-position
4040 : //
4041 0 : return fParams[0] + fParams[1] * (*xpos);
4042 : }
4043 :
4044 : //_____________________________________________________________________________
4045 : void AliTRDtrackerV1::AliTRDLeastSquare::GetCovarianceMatrix(Double_t *storage) const {
4046 : //
4047 : // Copies the values of the covariance matrix into the storage
4048 : //
4049 1352 : memcpy(storage, fCovarianceMatrix, sizeof(Double_t) * 3);
4050 676 : }
4051 :
4052 : //_____________________________________________________________________________
4053 : void AliTRDtrackerV1::AliTRDLeastSquare::Reset(){
4054 : //
4055 : // Reset the fitter
4056 : //
4057 3342 : memset(fParams, 0, sizeof(Double_t) * 2);
4058 1671 : memset(fCovarianceMatrix, 0, sizeof(Double_t) * 3);
4059 1671 : memset(fSums, 0, sizeof(Double_t) * 6);
4060 1671 : }
4061 :
4062 : ///////////////////////////////////////////////////////
4063 : // //
4064 : // Resources of class AliTRDtrackFitterRieman //
4065 : // //
4066 : ///////////////////////////////////////////////////////
4067 :
4068 : //_____________________________________________________________________________
4069 : AliTRDtrackerV1::AliTRDtrackFitterRieman::AliTRDtrackFitterRieman():
4070 0 : fTrackFitter(NULL),
4071 0 : fZfitter(NULL),
4072 0 : fCovarPolY(NULL),
4073 0 : fCovarPolZ(NULL),
4074 0 : fXref(0.),
4075 0 : fSysClusterError(0.)
4076 0 : {
4077 : //
4078 : // Default constructor
4079 : //
4080 0 : fZfitter = new AliTRDLeastSquare;
4081 0 : fCovarPolY = new TMatrixD(3,3);
4082 0 : fCovarPolZ = new TMatrixD(2,2);
4083 0 : memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * 6);
4084 0 : memset(fParameters, 0, sizeof(Double_t) * 5);
4085 0 : memset(fSumPolY, 0, sizeof(Double_t) * 5);
4086 0 : memset(fSumPolZ, 0, sizeof(Double_t) * 2);
4087 0 : }
4088 :
4089 : //_____________________________________________________________________________
4090 0 : AliTRDtrackerV1::AliTRDtrackFitterRieman::~AliTRDtrackFitterRieman(){
4091 : //
4092 : // Destructor
4093 : //
4094 0 : if(fZfitter) delete fZfitter;
4095 0 : if(fCovarPolY) delete fCovarPolY;
4096 0 : if(fCovarPolZ) delete fCovarPolZ;
4097 0 : }
4098 :
4099 : //_____________________________________________________________________________
4100 : void AliTRDtrackerV1::AliTRDtrackFitterRieman::Reset(){
4101 : //
4102 : // Reset the Fitter
4103 : //
4104 0 : if(fTrackFitter){
4105 0 : fTrackFitter->StoreData(kTRUE);
4106 0 : fTrackFitter->ClearPoints();
4107 0 : }
4108 0 : if(fZfitter){
4109 0 : fZfitter->Reset();
4110 0 : }
4111 0 : fXref = 0.;
4112 0 : memset(fTracklets, 0, sizeof(AliTRDseedV1 *) * AliTRDgeometry::kNlayer);
4113 0 : memset(fParameters, 0, sizeof(Double_t) * 5);
4114 0 : memset(fSumPolY, 0, sizeof(Double_t) * 5);
4115 0 : memset(fSumPolZ, 0, sizeof(Double_t) * 2);
4116 0 : for(Int_t irow = 0; irow < fCovarPolY->GetNrows(); irow++)
4117 0 : for(Int_t icol = 0; icol < fCovarPolY->GetNcols(); icol++){
4118 0 : (*fCovarPolY)(irow, icol) = 0.;
4119 0 : if(irow < 2 && icol < 2)
4120 0 : (*fCovarPolZ)(irow, icol) = 0.;
4121 : }
4122 0 : }
4123 :
4124 : //_____________________________________________________________________________
4125 : void AliTRDtrackerV1::AliTRDtrackFitterRieman::SetTracklet(Int_t itr, AliTRDseedV1 *tracklet){
4126 : //
4127 : // Add tracklet into the fitter
4128 : //
4129 0 : if(itr >= AliTRDgeometry::kNlayer) return;
4130 0 : fTracklets[itr] = tracklet;
4131 0 : }
4132 :
4133 : //_____________________________________________________________________________
4134 : Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::Eval(){
4135 : //
4136 : // Perform the fit
4137 : // 1. Apply linear transformation and store points in the fitter
4138 : // 2. Evaluate the fit
4139 : // 3. Check if the result of the fit in z-direction is reasonable
4140 : // if not
4141 : // 3a. Fix the parameters 3 and 4 with the results of a simple least
4142 : // square fit
4143 : // 3b. Redo the fit with the fixed parameters
4144 : // 4. Store fit results (parameters and errors)
4145 : //
4146 0 : if(!fTrackFitter){
4147 0 : return 1e10;
4148 : }
4149 0 : fXref = CalculateReferenceX();
4150 0 : for(Int_t il = 0; il < AliTRDgeometry::kNlayer; il++) UpdateFitters(fTracklets[il]);
4151 0 : if(!fTrackFitter->GetNpoints()) return 1e10;
4152 : // perform the fit
4153 0 : fTrackFitter->Eval();
4154 0 : fZfitter->Eval();
4155 0 : fParameters[3] = fTrackFitter->GetParameter(3);
4156 0 : fParameters[4] = fTrackFitter->GetParameter(4);
4157 0 : if(!CheckAcceptable(fParameters[3], fParameters[4])) {
4158 0 : fTrackFitter->FixParameter(3, fZfitter->GetFunctionValue(&fXref));
4159 0 : fTrackFitter->FixParameter(4, fZfitter->GetFunctionParameter(1));
4160 0 : fTrackFitter->Eval();
4161 0 : fTrackFitter->ReleaseParameter(3);
4162 0 : fTrackFitter->ReleaseParameter(4);
4163 0 : fParameters[3] = fTrackFitter->GetParameter(3);
4164 0 : fParameters[4] = fTrackFitter->GetParameter(4);
4165 0 : }
4166 : // Update the Fit Parameters and the errors
4167 0 : fParameters[0] = fTrackFitter->GetParameter(0);
4168 0 : fParameters[1] = fTrackFitter->GetParameter(1);
4169 0 : fParameters[2] = fTrackFitter->GetParameter(2);
4170 :
4171 : // Prepare Covariance estimation
4172 0 : (*fCovarPolY)(0,0) = fSumPolY[0]; (*fCovarPolY)(1,1) = fSumPolY[2]; (*fCovarPolY)(2,2) = fSumPolY[4];
4173 0 : (*fCovarPolY)(1,0) = (*fCovarPolY)(0,1) = fSumPolY[1];
4174 0 : (*fCovarPolY)(2,0) = (*fCovarPolY)(0,2) = fSumPolY[2];
4175 0 : (*fCovarPolY)(2,1) = (*fCovarPolY)(1,2) = fSumPolY[3];
4176 0 : fCovarPolY->Invert();
4177 0 : (*fCovarPolZ)(0,0) = fSumPolZ[0]; (*fCovarPolZ)(1,1) = fSumPolZ[2];
4178 0 : (*fCovarPolZ)(1,0) = (*fCovarPolZ)(0,1) = fSumPolZ[1];
4179 0 : fCovarPolZ->Invert();
4180 0 : return fTrackFitter->GetChisquare() / fTrackFitter->GetNpoints();
4181 0 : }
4182 :
4183 : //_____________________________________________________________________________
4184 : void AliTRDtrackerV1::AliTRDtrackFitterRieman::UpdateFitters(const AliTRDseedV1 * const tracklet){
4185 : //
4186 : // Does the transformations and updates the fitters
4187 : // The following transformation is applied
4188 : //
4189 : AliTRDcluster *cl = NULL;
4190 0 : Double_t x, y, z, dx, t, w, we, yerr, zerr;
4191 0 : Double_t uvt[4];
4192 0 : if(!tracklet || !tracklet->IsOK()) return;
4193 0 : Double_t tilt = tracklet->GetTilt();
4194 0 : for(Int_t itb = 0; itb < AliTRDseedV1::kNclusters; itb++){
4195 0 : if(!(cl = tracklet->GetClusters(itb))) continue;
4196 0 : if(!cl->IsInChamber()) continue;
4197 0 : if (!tracklet->IsUsable(itb)) continue;
4198 0 : x = cl->GetX();
4199 0 : y = cl->GetY();
4200 0 : z = cl->GetZ();
4201 0 : dx = x - fXref;
4202 : // Transformation
4203 0 : t = 1./(x*x + y*y);
4204 0 : uvt[0] = 2. * x * t;
4205 0 : uvt[1] = t;
4206 0 : uvt[2] = 2. * tilt * t;
4207 0 : uvt[3] = 2. * tilt * dx * t;
4208 0 : w = 2. * (y + tilt*z) * t;
4209 : // error definition changes for the different calls
4210 0 : we = 2. * t;
4211 0 : we *= TMath::Sqrt(cl->GetSigmaY2()+tilt*tilt*cl->GetSigmaZ2());
4212 : // Update sums for error calculation
4213 0 : yerr = 1./(TMath::Sqrt(cl->GetSigmaY2()) + fSysClusterError);
4214 0 : yerr *= yerr;
4215 0 : zerr = 1./cl->GetSigmaZ2();
4216 0 : for(Int_t ipol = 0; ipol < 5; ipol++){
4217 0 : fSumPolY[ipol] += yerr;
4218 0 : yerr *= x;
4219 0 : if(ipol < 3){
4220 0 : fSumPolZ[ipol] += zerr;
4221 0 : zerr *= x;
4222 0 : }
4223 : }
4224 0 : fTrackFitter->AddPoint(uvt, w, we);
4225 0 : fZfitter->AddPoint(&x, z, static_cast<Double_t>(TMath::Sqrt(cl->GetSigmaZ2())));
4226 0 : }
4227 0 : }
4228 :
4229 : //_____________________________________________________________________________
4230 : Bool_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CheckAcceptable(Double_t offset, Double_t slope){
4231 : //
4232 : // Check whether z-results are acceptable
4233 : // Definition: Distance between tracklet fit and track fit has to be
4234 : // less then half a padlength
4235 : // Point of comparision is at the anode wire
4236 : //
4237 : Bool_t acceptablez = kTRUE;
4238 : Double_t zref = 0.0;
4239 0 : for (Int_t iLayer = 0; iLayer < kNPlanes; iLayer++) {
4240 0 : if(!fTracklets[iLayer]->IsOK()) continue;
4241 0 : zref = offset + slope * (fTracklets[iLayer]->GetX0() - fXref);
4242 0 : if (TMath::Abs(fTracklets[iLayer]->GetZfit(0) - zref) > fTracklets[iLayer]->GetPadLength() * 0.5 + 1.0)
4243 0 : acceptablez = kFALSE;
4244 : }
4245 0 : return acceptablez;
4246 : }
4247 :
4248 : //_____________________________________________________________________________
4249 : Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetYat(Double_t x) const {
4250 : //
4251 : // Calculate y position out of the track parameters
4252 : // y: R^2 = (x - x0)^2 + (y - y0)^2
4253 : // => y = y0 +/- Sqrt(R^2 - (x - x0)^2)
4254 : // R = Sqrt() = 1/Curvature
4255 : // => y = y0 +/- Sqrt(1/Curvature^2 - (x - x0)^2)
4256 : //
4257 : Double_t y = 0;
4258 0 : Double_t disc = (x * fParameters[0] + fParameters[1]);
4259 0 : disc = 1 - fParameters[0]*fParameters[2] + fParameters[1]*fParameters[1] - disc*disc;
4260 0 : if (disc >= 0) {
4261 0 : disc = TMath::Sqrt(disc);
4262 0 : y = (1.0 - disc) / fParameters[0];
4263 0 : }
4264 0 : return y;
4265 : }
4266 :
4267 : //_____________________________________________________________________________
4268 : Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetZat(Double_t x) const {
4269 : //
4270 : // Return z position for a given x position
4271 : // Simple linear function
4272 : //
4273 0 : return fParameters[3] + fParameters[4] * (x - fXref);
4274 : }
4275 :
4276 : //_____________________________________________________________________________
4277 : Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetDyDxAt(Double_t x) const {
4278 : //
4279 : // Calculate dydx at a given radial position out of the track parameters
4280 : // dy: R^2 = (x - x0)^2 + (y - y0)^2
4281 : // => y = +/- Sqrt(R^2 - (x - x0)^2) + y0
4282 : // => dy/dx = (x - x0)/Sqrt(R^2 - (x - x0)^2)
4283 : // Curvature: cr = 1/R = a/Sqrt(1 + b^2 - c*a)
4284 : // => dy/dx = (x - x0)/(1/(cr^2) - (x - x0)^2)
4285 : //
4286 0 : Double_t x0 = -fParameters[1] / fParameters[0];
4287 0 : Double_t curvature = GetCurvature();
4288 : Double_t dy = 0;
4289 0 : if (-fParameters[2] * fParameters[0] + fParameters[1] * fParameters[1] + 1 > 0) {
4290 0 : if (1.0/(curvature * curvature) - (x - x0) * (x - x0) > 0.0) {
4291 0 : Double_t yderiv = (x - x0) / TMath::Sqrt(1.0/(curvature * curvature) - (x - x0) * (x - x0));
4292 0 : if (fParameters[0] < 0) yderiv *= -1.0;
4293 : dy = yderiv;
4294 0 : }
4295 : }
4296 0 : return dy;
4297 : }
4298 :
4299 : //_____________________________________________________________________________
4300 : Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCurvature() const {
4301 : //
4302 : // Calculate track curvature
4303 : //
4304 : //
4305 0 : Double_t curvature = 1.0 + fParameters[1]*fParameters[1] - fParameters[2]*fParameters[0];
4306 0 : if (curvature > 0.0)
4307 0 : curvature = fParameters[0] / TMath::Sqrt(curvature);
4308 0 : return curvature;
4309 : }
4310 :
4311 : //_____________________________________________________________________________
4312 : void AliTRDtrackerV1::AliTRDtrackFitterRieman::GetCovAt(Double_t x, Double_t *cov) const {
4313 : //
4314 : // Error Definition according to gauss error propagation
4315 : //
4316 0 : TMatrixD transform(3,3);
4317 0 : transform(0,0) = transform(1,1) = transform(2,2) = 1;
4318 0 : transform(0,1) = transform(1,2) = x;
4319 0 : transform(0,2) = x*x;
4320 0 : TMatrixD covariance(transform, TMatrixD::kMult, *fCovarPolY);
4321 0 : covariance *= transform.T();
4322 0 : cov[0] = covariance(0,0);
4323 0 : TMatrixD transformZ(2,2);
4324 0 : transformZ(0,0) = transformZ(1,1) = 1;
4325 0 : transformZ(0,1) = x;
4326 0 : TMatrixD covarZ(transformZ, TMatrixD::kMult, *fCovarPolZ);
4327 0 : covarZ *= transformZ.T();
4328 0 : cov[1] = covarZ(0,0);
4329 0 : cov[2] = 0;
4330 0 : }
4331 :
4332 : //____________________________________________________________________
4333 : Double_t AliTRDtrackerV1::AliTRDtrackFitterRieman::CalculateReferenceX(){
4334 : //
4335 : // Calculates the reference x-position for the tilted Rieman fit defined as middle
4336 : // of the stack (middle between layers 2 and 3). For the calculation all the tracklets
4337 : // are taken into account
4338 : //
4339 : // Parameters: - Array of tracklets(AliTRDseedV1)
4340 : //
4341 : // Output: - The reference x-position(Float_t)
4342 : //
4343 : Int_t nDistances = 0;
4344 : Float_t meanDistance = 0.;
4345 : Int_t startIndex = 5;
4346 0 : for(Int_t il =5; il > 0; il--){
4347 0 : if(fTracklets[il]->IsOK() && fTracklets[il -1]->IsOK()){
4348 0 : Float_t xdiff = fTracklets[il]->GetX0() - fTracklets[il -1]->GetX0();
4349 0 : meanDistance += xdiff;
4350 0 : nDistances++;
4351 0 : }
4352 0 : if(fTracklets[il]->IsOK()) startIndex = il;
4353 : }
4354 0 : if(fTracklets[0]->IsOK()) startIndex = 0;
4355 0 : if(!nDistances){
4356 : // We should normally never get here
4357 0 : Float_t xpos[2]; memset(xpos, 0, sizeof(Float_t) * 2);
4358 : Int_t iok = 0, idiff = 0;
4359 : // This attempt is worse and should be avoided:
4360 : // check for two chambers which are OK and repeat this without taking the mean value
4361 : // Strategy avoids a division by 0;
4362 0 : for(Int_t il = 5; il >= 0; il--){
4363 0 : if(fTracklets[il]->IsOK()){
4364 0 : xpos[iok] = fTracklets[il]->GetX0();
4365 0 : iok++;
4366 : startIndex = il;
4367 0 : }
4368 0 : if(iok) idiff++; // to get the right difference;
4369 0 : if(iok > 1) break;
4370 : }
4371 0 : if(iok > 1){
4372 0 : meanDistance = (xpos[0] - xpos[1])/idiff;
4373 : }
4374 : else{
4375 : // we have do not even have 2 layers which are OK? The we do not need to fit at all
4376 0 : return 331.;
4377 : }
4378 0 : }
4379 : else{
4380 0 : meanDistance /= nDistances;
4381 : }
4382 0 : return fTracklets[startIndex]->GetX0() + (2.5 - startIndex) * meanDistance - 0.5 * (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
4383 0 : }
|